• Title/Summary/Keyword: 관전압 변화

Search Result 120, Processing Time 0.032 seconds

The Effectiveness of CT and MRI Contrast Agent for SUV in 18F-FDG PET/CT Scanning (18F-FDG PET/CT 검사에서 정량분석에 관한 CT와 MRI 조영제의 효과)

  • Cha, Sangyoung;Cho, Yonggwi;Lee, Yongki;Song, Jongnam;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • In this study, among various factors having influence on SUV, we intended to compare and analyze the change of SUV using CT(4 type) and MRI(3 type) contrast agents which are commercialized now. We used Discovery 690 PET/CT(GE) and NEMA NU2 - 1994 PET phantom as experimental equipment. We have conducted a study as follows; first, we filled distilled water to phantom about two-thirds and injected radioisotope(18F-FDG 37 MBq), contrast agent. Second, we mixed CT contrast agent with distilled water and MRI contrast agent with that water separately. And then, we stirred the fluid and filled distilled water fully not to make air bubble. In emission scan, we had 15minutes scanning time after 40 minutes mixing contrast agent with distilled water. In transmission scan, we used CT scanning and its measurement conditions were tube voltage 120 kVp, tube current 40 mA, rotation time 0.5 sec, slice thickness 3.27 mm, DFOV 30 cm. Analyzing results, we set up some ROIs in 10th, 15th, 20th, 25th, 30th slice and measured SUVmean, SUVmax. Consequently, all images mixed 3 types of MRI contrast agent with distilled water have high SUVmean as compared with pure FDG image but there was no statistical significance. In SUVmax, they have high score and there was statistical significance. And other 4 images mixed 4 types of CT contrast agent with distilled water have significance in both SUVmean and SUVmax. Attenuation correction in PET/CT has been executed through various methods to make high quality image. But we figured out that using CT and MRI contrast agents before PET/CT scanning could make distortion of image and decrease diagnostic value. In that reason, we have to sort out the priority of examination in hospital not to disturb other examination's results. Through this process, we will be able to give superior medical service to our customers.

Invivo Dosimetry for Mammography with and without Lead Apron Using the Glass Dosimeters (유방촬영술에서 유리선량계를 이용한 납치마의 선량차폐 효과 측정)

  • Yu, Su-Jeong;Lim, Sangwook;Ma, Sun Young;Seo, Sun-Youl;Kim, Young-Jae;Kang, Young-Nam;Keum, Ki Chang;Cho, Samju
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • The purpose of this study is to see the usefulness of lead apron for critical organs near the breast under examining. For clinical experiment, 30 female volunteers who agreed to their participation in the experiments, were chosen and divided into two groups, 15 in group A and 15 in group B respectively. group A is to see whether each side of breast under mammography affects to other side glandular on the critical organs is same, because it is not allowed to scan the both breast for same person or to scan repeatedly. Group B is to see the effectiveness of lead apron during the mammography of right breast. Glass dosimeters were placed on the thyroid, the contralateral breast, and lower abdomen where near the breast during examining. The average glandular doses on the surface in mammography of the thyroid gland, the contralateral breast, the lower abdomen were 0.0692 mGy, 0.6790 mGy, and 0.0122 mGy, respectively, which was an extremely low level of glandular dose. In group B, as to the thyroid gland, average dose was decreased from 0.0922 mGy to 0.0158 mGy. The average dose of contralateral breast was decreased from 0.8575 mGy to 0.0286 mGy. The average doses of lower abdomen was decrease 0.0150 mGy to 0.0173 mGy. As to the lower abdomen, dose decreased from 0.0150 mGy before the use of an apron down to 0.0173 mGy after the use. As p-value was under 0.05, statistically significant difference was observed between the two groups. Wearing an apron can have the protective effects on the thyroid gland up to 20 times lower than not wearing one. Besides, it is also necessary to protect the other breast during the examination by wearing one.

A Study on the Development and usefulness of the x/y Plane and z Axis Resolution Phantom for MDCT Detector (MDCT 검출기의 x/y plane과 z축 분해능 팬텀 개발 및 유용성에 관한 연구)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • The aim of this study is to establish a new QC method that can simultaneously evaluate the resolution of the x/y plane and the z-axis by producing a phantom that can reflect exposure and reconstruction parameter of MDCT system. It was used with Aquilion ONE(Cannon Medical System, Otawara, Japan), and the examination was scanned using of 120 kV, 260 mA, and the D-FOV of 300 mm2. It produced new SSP phantom modules in which two aluminum plates inclined at 45° to a vertical axis and a transverse axis to evaluate high contrast resolution of x/y plane and z axis. And it changed factors such as the algorithm, distance from gantry iso-center. All images were reconstructed in five steps from 0.6 mm to 10.0 mm slice thickness to measure resolution of x/y plane and z-axis. The image data measured FWHM and FWTM using Profile tool of Aquarius iNtusion Edition ver. 4.4.13 P6 software(Terarecon, California, USA), and analysed SPQI and signal intensity by ImageJ program(v1.53n, National Institutes of Health, USA). It decreased by 4.09~11.99%, 4.12~35.52%, and 4.70~37.64% in slice thickness of 2.5 mm, 5.0 mm, and 10.0 mm for evaluating the high contrast resolution of x/y plane according to distance from gantry iso-center. Therefore, the high contrast resolution of the x/y plane decreased when the distance from the iso-center increased or the slice thickness increased. Additionally, the slice thicknesses of 2.5 mm, 5.0 mm, and 10.0 mm with a high algorithm increased 74.83, 15.18 and 81.25%. The FWHM was almost constant on the measured SSP graph for evaluating the accuracy of slice thickness which represents the resolution of x/y plane and z-axis, but it was measured to be higher than the nominal slice thickness set by user. The FWHM and FWTM of z-axis with axial scan mode tended to increase significantly as the distance increased from gantry iso-center than the helical mode. Particularly, the thinner slice thickness that increased error range compare with the nominal slice thickness. The SPQI increased with thick slice thickness, and that was closer to 90% in the helical scan than the axial scan. In conclusion, by producing a phantom suitable for MDCT detectors and capable of quantitative resolution evaluation, it can be used as a specific method in the management of research quality and management of outdated equipment. Thus, it is expected to contribute greatly to the discrimination of lesions in the field of CT imaging.

Change of Dose Exposure and Improvement of Image Quality by Additional Filtration in Mammography (유방촬영용장치 부가필터에 따른 선량변화 및 화질개선)

  • Cho, Woo Il;Kim, Young Kuen;Lee, Gil Dong
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.78-90
    • /
    • 2013
  • Recently, the interest on exposure to radiation is rising. The radiation exposure of mammography is higher in absorbed dose than of X-ray, therefore unnecessary exposure needs to be reduced, and higher image quality is needed. Generally, ray quality of the radiation imaging is an important factor that determines image quality and the amount of ray exposure, and they are affected by tube voltage and added filter. The X-ray energy that is exposed from mammography device is generally a continuous spectrum, which includes low energy that has minute influence on the image quality, and high energy that hinders contrast on image. Currently, molybdenum (Mo) and rhodium (Rh) are the most used added filters for mammography device, and they are used differently according to the energy region of X-ray. This study aims to find out the degree of reduction in exposure dose according to the thickness of aluminum (Al), and to study the changes in image quality and dose when the added filter plates that are made with niobium (Nb) or zirconium (Zr) are used, other than molybdenum (Mo) and rhodium (Rh), the two most used added filters that have similar atomic number and K-absorption regions as Nb and Zr. In this study, single-added filters of molybdenum (Mo), niobium (Nb), and zirconium (Zr) are used, and in some cases, Aluminum (Al) is combined with the single filters. In this case, image quality is considered to be improved depending on the type of added filters, and by using Aluminum (Al) filter together with the others, unnecessary X-ray of low energy would be absorbed, therefore the dose is expected to decrease without any influence when the concentration level becomes identical.

Evaluating applicability of metal artifact reduction algorithm for head & neck radiation treatment planning CT (Metal artifact reduction algorithm의 두경부 CT에 대한 적용 가능성 평가)

  • Son, Sang Jun;Park, Jang Pil;Kim, Min Jeong;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • Purpose : The purpose of this study is evaluation for the applicability of O-MAR(Metal artifact Reduction for Orthopedic Implants)(ver. 3.6.0, Philips, Netherlands) in head & neck radiation treatment planning CT with metal artifact created by dental implant. Materials and Methods : All of the in this study's CT images were scanned by Brilliance Big Bore CT(Philips, Netherlands) at 120kVp, 2mm sliced and Metal artifact reduced by O-MAR. To compare the original and reconstructed CT images worked on RTPS(Eclipse ver 10.0.42, Varian, USA). In order to test the basic performance of the O-MAR, The phantom was made to create metal artifact by dental implant and other phantoms used for without artifact images. To measure a difference of HU in with artifact images and without artifact images, homogeneous phantom and inhomogeneous phantoms were used with cerrobend rods. Each of images were compared a difference of HU in ROIs. And also, 1 case of patient's original CT image applied O-MAR and density corrected CT were evaluated for dose distributions with SNC Patient(Sun Nuclear Co., USA). Results : In cases of head&neck phantom, the difference of dose distibution is appeared 99.8% gamma passing rate(criteria 2 mm / 2%) between original and CT images applied O-MAR. And 98.5% appeared in patient case, among original CT, O-MAR and density corrected CT. The difference of total dose distribution is less than 2% that appeared both phantom and patient case study. Though the dose deviations are little, there are still matters to discuss that the dose deviations are concentrated so locally. In this study, The quality of all images applied O-MAR was improved. Unexpectedly, Increase of max. HU was founded in air cavity of the O-MAR images compare to cavity of the original images and wrong corrections were appeared, too. Conclusion : The result of study assuming restrained case of O-MAR adapted to near skin and low density area, it appeared image distortion and artifact correction simultaneously. In O-MAR CT, air cavity area even turned tissue HU by wrong correction was founded, too. Consequentially, It seems O-MAR algorithm is not perfect to distinguish air cavity and photon starvation artifact. Nevertheless, the differences of HU and dose distribution are not a huge that is not suitable for clinical use. And there are more advantages in clinic for improved quality of CT images and DRRs, precision of contouring OARs or tumors and correcting artifact area. So original and O-MAR CT must be used together in clinic for more accurate treatment plan.

Comparison Evaluation of Image Quality with Different Thickness of Aluminum added Filter using GATE Simulation in Digital Radiography (GATE 시뮬레이션을 사용한 알루미늄 부가필터 두께에 따른 Digital Radiography의 영상 화질 비교 평가)

  • Oh, Minju;Hong, Joo-Wan;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • In X-ray image, the role of filtration through the filter is to reduce the exposure of the patient by using photon which is useful in formation of the image, and at the same time, enhance the contrast of the image. During interaction between photon and object, low energy X-rays are absorbed from the site of a few cm of the first patient's tissue, and high energy X-rays are the one which form the image. Therefore, the radiation filter absorbs low energy X-ray in order to lower the exposure of the patient and improve the quality of the image. The purpose of this study is to compare the effect on the image quality by differences of added filter through simulation image and actual radiation image. For that purpose, we used Geant4 Application for Tomographic Emission (GATE) as a tool for Monte Carlo simulation. We set actual size, shape and material of Polymethylmethacrylate (PMMA) Phantom on GATE and differentiated the parameter of added filter. Also, we took image of PMMA phantom with same parameter of added filter by digital radiography (DR). Than we performed contrast-to-noise ratio (CNR) evaluation on both simulation image and actual DR image by Image J. Finally, we observed the effect on image quality due to different thickness of added filter, and compared two images' CNR evaluation's transitions of change. The result of this experiment showed decreasing in the progress of CNR on both DR and simulation image. It is ultimately caused by decreasing in contrast on image. In theory, contrast decrease with kVp increased. Given that condition, this study found out that filter makes not only decreasing total dose by absorbing low energy of X-ray, but also increasing average energy of X-ray.

The Study of Reducing Radiation Exposure Dose and Comparing SUV According to Applied IRIS (Iterative Reconstruction in Image Space) for PET/CT (PET/CT 검사 시 IRIS (Iterative Reconstruction in Image Space) 적용에 따른 CT 피폭선량 감소와 PET SUV 비교 연구)

  • Do, Yong Ho;Song, Ho Jun;Lee, Hyung Jin;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.29-34
    • /
    • 2012
  • Purpose : Presently, hardwares and softwares for reducing radiation exposure are continually developed for PET/CT examination. Purpose of this study is to evaluate effectiveness of reducing radiation exposure dose of CT and SUV changes of PET when applied each kernel to ACCT (Attenuation Correction Computed Tomography) according to adopted IRIS (Iterative Reconstruction in Image Space) software. Materials and Methods : Biograph mCT (Siemens, Germany) was used as a PET/CT scanner. Using AAPM CT performance phantom, from standard (120 kVp, 100 mAs), 7 scans were conducted by reducing 15 mAs each. After image reconstruction by FBP (Filtered Back Projection) and IRIS, noise and spatial resolution were evaluated. The same method was applied to anthropomorphic chest phantom and acquired images were compared. NEMA IEC body phantom was used for SUV evaluation. Injected dose rate for hot sphere (hot) and background cylinder (BKG) were 1:8. CT dose condition (120 kVp, 50 mAs) was the same for each scan and PET scan durations were 1, 2, 3 and 4min. After scanning, each kernel of IRIS was applied to ACCT. And PET images were reconstructed by ACCT adopted IRIS for comparing SUV changes. Results : AAPM phantom test for noise evaluation, SD for FBP 100 mAs, IRIS 55 mAs were 8.8 and 8.9. FBP 85 mAs, IRIS 40 mAs were 9.5 and 9.7. FBP 70 mAs, IRIS 25 mAs were 11.9 and 11.1. Above mAs condition for FBP and IRIS, SD showed similar values. And for spatial resolution test, there was no significant difference. For chest phantom test, when applied the same mAs and kernel to both of FBP and IRIS, every applied kernels showed reduced noise. Lower mAs and higher kernel value showed higher noise reduction. There was no considerable difference only except for I70 very sharp kernel for SUV comparison using NEMA IEC body phantom. Conclusion : In this study, low mAs (55 mAs) applied IRIS and standard mAs (100 mAs) applied FBP showed similar noise. And only except for I70 kernel, there was no significant SUV changes. It is possible to reduce needless radiation exposure and acquire better image quality than FBP's through applying appropriate kernel of IRIS to PET/CT.

  • PDF

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

Image Quality Evaluation of CsI:Tl and Gd2O2S Detectors in the Indirect-Conversion DR System (간접변환방식 DR장비에서 CsI:Tl과 Gd2O2S의 검출기 화질 평가)

  • Kong, Changgi;Choi, Namgil;Jung, Myoyoung;Song, Jongnam;Kim, Wook;Han, Jaebok
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • The purpose of this study was to investigate the features of CsI:Tl and $Gd_2O_2S$ detectors with an indirect conversion method using phantom in the DR (digital radiography) system by obtaining images of thick chest phantom, medium thickness thigh phantom, and thin hand phantom and by analyzing the SNR and CNR. As a result of measuring the SNR and CNR according to the thickness change of the subject, the SNR and CNR were higher in CsI:Tl detector than in $Gd_2O_2S$ detector when the medium thickness thigh phantom and thin hand phantom were scanned. However, when the thick chest phantom was used, for the SNR at 80~125 kVp and the CNR at 80~110 kVp in the $Gd_2O_2S$ detector, the values were higher than those of CsI:Tl detector. The SNR and CNR both increased as the tube voltage increased. The SNR and CNR of CsI:Tl detector in the medium thickness thigh phantom increased at 40~50 kVp and decreased as the tube voltage increased. The SNR and CNR of $Gd_2O_2S$ detector increased at 40~60 kVp and decreased as the tube voltage increased. The SNR and CNR of CsI:Tl detctor in the thin hand phantom decreased at the low tube voltage and increased as the tube voltage increased, but they decreased again at 100~110 kVp, while the SNR and CNR of $Gd_2O_2S$ detector were found to decrease as the tube voltage increased. The MTF of CsI:Tl detector was 6.02~90.90% higher than that of $Gd_2O_2S$ detector at 0.5~3 lp/mm. The DQE of CsI:Tl detector was 66.67~233.33% higher than that of $Gd_2O_2S$ detector. In conclusion, although the values of CsI:Tl detector were higher than those of $Gd_2O_2S$ detector in the comparison of MTF and DQE, the cheaper $Gd_2O_2S$ detector had higher SNR and CNR than the expensive CsI:Tl detector at a certain tube voltage range in the thick check phantom. At chest X-ray, if the $Gd_2O_2S$ detector is used rather than the CsI:Tl detector, chest images with excellent quality can be obtained, which will be useful for examination. Moreover, price/performance should be considered when determining the detector type from the viewpoint of the user.