• Title/Summary/Keyword: 관성/점성저항

Search Result 2, Processing Time 0.015 seconds

Velocity Considered Sectional Porosity Equivalent Model (VSPE) of Filters for CFD Analysis of Breakaway Devices (수소 브레이크어웨이 디바이스 유동해석을 위한 필터의 구간별 다공성 등가 모델 제시)

  • Son, Seong-Jae;An, Su-Jin;Song, Tae-Hoon;Joe, Choong-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.82-90
    • /
    • 2019
  • We propose an equivalent model of a sintered metal mesh filter calculated by Ergun's equation and polynomial regression for the CFD analysis of breakaway devices at a hydrogen fueling station. CFD analysis of filters that cause high pressure loss is essential because breakaway devices in high-pressure hydrogen conditions require low pressure loss. A differential pressure experiment with a filter was performed in a low-pressure air condition considering similarities. An equivalent model was developed by deriving the resistance value by the polynomial regression using the experimental results. The results of CFD analysis using the equivalent model show that there was almost no error in the operating condition of the breakaway device compared to the experimental results. Through this work, we believe that the proposed equivalent model of a filter can be applied to the analysis of breakaway devices in hydrogen fueling stations. We will study how to optimize the shape and position of the filter in breakaway devices using the developed equivalent model.

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF