• Title/Summary/Keyword: 관비시스템

Search Result 5, Processing Time 0.018 seconds

Application of Subsurface Drip Fertigation System to Increase Growth and Yield of Maize (옥수수의 생육 및 수량 증대를 위한 지중점적 관비 시스템의 적용)

  • Jong Hyuk Kim;Yeon Ju Lee;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • This study was conducted to investigate how maize (Zea maize L.) growth and yield were affected by irrigation and fertigation using a subsurface drip system. The system consisted of a buried (40 cm underground) drip pipe that can be used in a semi-permanent manner without affecting agricultural work on the ground. The amount of water required for the fertigation treatment was determined to be 24.3 tons 10a-1 for the sandy loam soil used in this experimental field. Fertigation treatments based on the previously calculated 24.3 tons 10a-1 were carried out as topdressing applications. They were applied through the subsurface drip system with the following fertilizer concentration (nitrogen only, written in kg 10a-1: N 4, N 6, N 8, N 10 ). The other treatments were irrigation only and control (non-treatment). The results indicated that the N 8 treatment was the most effective, increasing yield by 30% and 14% compared with the control and irrigation treatments, respectively. These results highlight the effectiveness of fertigation (N 8 kg 10a-1) at V6 and R1 stage as a form of topdressing fertilization using a subsurface drip system for achieving a high yield and stable maize production.

Selection of Vegetables and Fertigation Methods for Veranda Gardening (베란다 재배에 적합한 채소작물 및 관비방법 선발)

  • Moon, Ji-Hye;Lee, Sang-Gyu;Jang, Yoon-Ah;Lee, Woo-Moon;Lee, Ji-Weon;Kim, Seung-Yu;Park, Hyun-Jun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • This study was conducted to select leaf vegetables suitable for cultivation in apartment verandas and simple and easy fertigation method for home gardening. In order to develop the convenient fertigation method, hydroponics, wick irrigation, and overhead irrigation methods were compared. For the wick irrigation, two types of nutrient sources were used; one was slow release fertilizers mixed with medium and the other one was nutrient solution filled in container located under pots. The growth of leafy lettuce, leaf mustard, and leaf beet was better in both of the wick irrigation methods rather than in overhead irrigation and hydroponics. The wick irrigation method is very easy, so that it is expected to bring a good result from the cultivating and managing point of view, if it brings with commercialized system along with slow release fertilizer. As a result of investigation of environment such as temperature, relative humidity, and irradiance level in apartment verandas in autumn the highest irradiance level during a day was just 48% and 35% in verandas facing south and feeing southeast, respectively, comparing to that in greenhouse. The light environment was investigated as a limiting factor for vegetable growing in verandas. Therefore, to select the vegetables showing good growth under low irradiance environment, nine leaf vegetables such as romaine lettuce, lent lettuce, head lettuce, endive, pak-choi, leaf mustard, garland chrysanthemum, leaf beet, and Chinese chive were grown under 0%, 50%, 70%, 90% shading. Among them, Chinese chive showed the best growth under low irradiance levels. Endive showed line growth reduction according to shading degree, however, even under 90% shading condition, it showed good growth. And then leafy lettuce, garland chrysanthemum, and pak-choi followed. Therefore, these results will be of help in selecting vegetables for veranda gardening with different light levels.

Field Survey of Greenhouse for Strawberry Culture -Case Study Based on Western Gyeongnam Area- (딸기재배 온실의 현장조사 분석 -서부경남 지역을 중심으로-)

  • Jeong, Young Kyun;Lee, Jong Goo;Yun, Sung Wook;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.253-259
    • /
    • 2018
  • This study set out to select a system to realize an optimal environment for strawberry cultivation greenhouses based on data about the growth and development of strawberry and its environment and to provide basic data for the research of its improved productivity. For these purposes, the investigator conducted a field survey with greenhouses for strawberry cultivation in western Gyeongnam. The findings show that farmers in their fifties and sixties accounted for the biggest part in the age groups of strawberry farmers. While those who were under 50 were accounted for approximately 67.5%, those who were 60 or older accounted for 32.5%. As for cultivation experiences, the majority of the farmers had ten years of cultivation experiences or less with some having 30 years of cultivation experiences or more. All the farmers built an arch type single span greenhouse. Those who used nutrient solutions were about 75.0%, being more than those who used soil. All of the farmers that used a nutrient solution adopted an elevated hydroponic system. The single span greenhouses were in the range of 7.5~8.5m, 1.3~1.8m and 2.5~3.5m for width, eaves, and ridge height, respectively, regardless of survey areas. The rafters interval was about 0.7~0.8m. In elevated hydroponic cultivation, the width, height, and interval of the beds were about 0.25m, 1.2m and 1.0m, respectively. As for the strawberry varieties, the domestic ones accounted for approximately 97.5% with Seolhyang being the most favorite one at about 65.0%. As for the internal environment factors of greenhouses, 38 farmers measured only temperature and relatively humidity. As for hydroponics, the farmers used a hydroponics control system. Except for the farmers that introduced a smart farm system for temperature and humidity control, approximately 85.0% controlled temperature and humidity only with a control panel for side windows and ventilation fans. As for heating and heat insulation, all of the farmers were using water curtains with many farmers using an oil or electric boiler, radiating lamp or non-woven fabric, as well, when necessary.