• Title/Summary/Keyword: 관군

Search Result 90, Processing Time 0.02 seconds

Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry (PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정)

  • 김경천;최득관;박재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Horizontal Tubes of Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기에서의 응축열전달 및 압력강하 특성에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Park, Byung-Kyu;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.191-198
    • /
    • 2001
  • A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite Concept Method based on FVM and $k-\varepsilon$ turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate $4\sim8%$ higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer.

  • PDF

R-134a Flow Boiling on a Plain Tube Bundle (평활관군의 R-134a 흐름비등에 관한 연구)

  • 김종원;김정오;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from $8\;kg/m^2s$ to $26\;kg/m^2s$ and heat flux from $10\;kW/m^2s$ to $40\;kW/m^2s$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which satisfactorily () predicted the data. Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

  • PDF

Flow Boiling of R-123/Oil Mixture in a Plain Tube Bundle (평활관군 내 R-123/오일의 흐름비등)

  • Lee, Jin-Wook;Lee, Jae-Ho;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.704-709
    • /
    • 2010
  • The effect of oil on flow boiling of R-123 in a plain tube bundles was experimentally investigated for a range of quality and heat flux. It is shown that the heat transfer coefficient decreased as the oil concentration increased. Comparison with the previous pool boiling data reveals that the reduction of heat transfer coefficient by oil is more pronounced in pool boiling, and the difference increased with the increase of oil concentration and heat flux. Within the experimental range, the variation of mass flux or quality has negligible effect on the heat transfer coefficient.

A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model (저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구)

  • 김형수;최영기;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.

A Study on the Fouling Effect of Geothermal Water Scale in In-line tube Bank (직렬 관군에서 지열수스케일의 파울링 영향에 관한연구)

  • 윤석범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • An experimental study was conducted to investigate the fouling effects of geothermal water scale deposited onto a heating surface upon its forced convection heat transfer characteristics. Scales deposited onto the heating surfaces of heat exchangers seriously reduce the heat transfer perfor-mance and also increase the hydrodynamic drag. Accordingly fouling is an important problem in the design and operation of heat exchangers. The cylinders were settled in tandem with equal dis-tance between neighbouring cylinders and only the test cylinder was heated under the condition of constant heat flux. The Reynolds number was varied from 13000310 through 50003100. It is found that the heat transfer of the in-line tube banks greatly varies with the fouling of geothermal water scale especially its scale height. Further the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.

  • PDF

Effects of non-absorbable gases in the absorption process of water vapor Into the Lithium Bromide-water solution film on horizontal tube bank (수평관군에서 리튬브로마이드 수용액 막의 수증기 흡수과정에 대한 비흡수가스의 영향)

  • 김병주;권기석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.218-225
    • /
    • 2000
  • In the present study, the effects of film Reynolds number (60∼200) and volumetric content of non-absorbable gases (0∼10%) in water vapor on the absorption process of aqueous LiBr solution were investigated experimentally. The formation of solution film on the horizontal tubes of six rows were observed to be complete for Re>100. Transition film Reynolds number were found to exist above which the Nusselt number and Schmidt number diminishes with solution flow rate. As the concentration of non-absorbable gases increased, mass transfer rate decreased more seriously than heat transfer rate did. The degradation effects of non-absorbable gases seemed to be significant especially when small amount of non-absorbable gases were introduced to the pure water vapor.

  • PDF

Condensation Heat Transfer on the Horizontal Tubles of a Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기의 응축 열전달 특성)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The thermal performance of a modular shell and tube-bundle heat exchanger has been analyzed using section-by-section method. Investigated are the effects of air and water inlet conditions on condensation heat transfer of horizontal tubes. It is found that they are significant for the heat transfer of the modular shell and tube-bundle heat exchanger It is shown that the predictions and experimental results are in good agreements.

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Flat Tube-Bundle Heat Exchanger (편평관군 열교환기에서의 응축 열전달 및 압력강하 특성해석)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1177-1184
    • /
    • 2005
  • A numerical analysis was carried out on the heat and mass transfer, and pressure drop characteristics of the modular tube bundle heat exchanger. The finite volume method with a $k-\varepsilon$ turbulence model was used for the analysis. Due to condensation, the total heat transfer rate is observed about $4\~8\%$ higher than that on dry surfaces. Total heat transfer rate increases with increase in the velocity, temperature and relative humidity of incoming air. It also increases with decreasing the aspect ratio of heat exchanger tube. The inlet velocity of cooling water has little effect on the total heat transfer when the other conditions are fixed.

Fluid flow and heat transfer around tubes arranged in line (일행관군에서의 유동특성과 열전달현상에 관한 연구)

  • 부정숙;조석호;정규하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1603-1612
    • /
    • 1990
  • An experimental study is conducted to investigate the fluid flow and heat transfer around tubes arranged in line. All measurements are performed at Reynolds number 1.58*10$^{4}$ with varing tube spacings from the small pitch ratio(L/D=1.25) to the large pitch ratio(L/D=3.0). Mean static pressures and mean temperatures of the surface of tubes and mean velocities and turbulent intensities in tube banks are measured. The flow patterns and the characteristics of heat transfer are strongly influenced by the tube spacings. Especially, in the case of very small spacings(L/D=1.25), the flow between neighboring tubes becomes very stagnant and the heat transfer decreases. In the case of each tube spacing, the characteristics of heat transfer around the 3rd, the 4th and the 5th tubes are nearly similar to one another, because the flow around tubes becomes stable at the 3rd tubes. The local heat transfer has the peak value near the reattachment point which has the peak value of pressure, but the local heat transfer for the 2nd tube of L/D=1.25 without reattaching has the peak value at .theta.=75.deg.. For each pitch ratio, the mean heat transfer increases gradually toward the downstream tubes, because the oncoming flow through neighboring tubes comes closer to the forward and rear surfaces of the tube and the turbulent intensity becomes larger in the downstream direction.