• Title/Summary/Keyword: 관개수준

Search Result 78, Processing Time 0.03 seconds

Effect of Soil Salinity on Growth, Yield and Nutrients Uptake of Whole Crop Barley in Newly Reclaimed Land (신간척지에서 토양 염농도가 청보리 생육, 수량 및 양분 흡수에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Shin, Pyung;Yang, Chang-Hyu;Back, Nam-Hyun;Lee, Kyeong-Bo;Baek, Seung-Hwa;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • BACKGROUND: Newly reclaimed land has poor soil environment for crop growth since it is high in salt concentration but low in organic content compared with ordinary soil. It is known that whole-crop-barley can grow better in the soil of relatively high salt concentration than other crops but, the growth is poor at the concentration if higher than certain amount and it is a difficulty to secure productivity. Hence, the level of soil salt concentration suitable for the production of bulky feed in newly reclaimed land has been investigated. METHODS AND RESULTS: At Saemanguem reclaimed land, the land for the soil salt concentration electrical conductivity (EC) 0.8, 3.1, 6.5, 11.0 dS/m was selected; and chemical fertilizer $N-P_2O_5-K_2O$ (150-100-100kg/ha) was tested; and forage barley 220kg/ha were sown. The soil salt concentration during the cultivation period decreased in the order of harvest season>earing season>sowing season>wintering season, and the salt concentration in harvest season is 1.4-4.2 times higher than that of the sowing season. The higher the salt concentration, the poorer the over ground growth due to poor rooting; especially at EC 11.0 ds/m there was emergence but, it blighted after wintering. The Yield from the soil salt concentration 3.1dS/m and 6.5 dS/m was 68% and 35% from that of the soil salt concentration 0.8 dS/m (8.8 MT/ha) respectively. The proline content in early life stage was more than that of the harvest season, and it increased with salt concentration. The higher salt concentration, the more $Na_2O$ and MgO content in harvest season; but the higher the salt concentration, the less the content of N, $P_2O_5$, $K_2O$ and CaO. CONCLUSION(S): When the soil salt concentration becomes higher than 3.1 dS/m, the yield becomes poor because there is serious growth inhibition of forage barley both in root part and above aerial part that results in unbalanced absorption of nutrients. Therefore, it is recommended that the salt concentration should be lowered below 3.1 dS/m by underground drainage facilities or irrigating water for the stable production of whole-crop-barley.

Distribution and Characteristics of Organophosphorous pesticides in Shingu Reservoir, Korea (신구저수지의 유기인계 농약 분포와 특성)

  • Hong, Seong-Jin;Choi, Jin-Young;Yang, Dong-Beom;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.318-326
    • /
    • 2007
  • Characteristics of organophoshhorus pesticides (OPs) distribution were investigated in Shingu Reservoir, as a shallow eutrophic agriculture reservoir in Korea. In August 2006, IBP, DDVP and dyfonate were detected in the water column of Singu Reservoir, ranging from 1340.7 to 16030.1 ng $L^{-1}$, 58.7 to 127.6 ng $L^{-1}$ and N.D. to 20.3 ng $L^{-1}$, respectively, However, in September 2006, mevinfos, ethoprofos, phorate, chlorfenvinfos, and methidathion were also found in addition to IBP (202.5${\sim}$213.2 ng $L^{-1}$), DDVP (100.7${\sim}$340.6 ng $L^{-1}$) and dyfonate (N.D.${\sim}$25.0 ng $L^{-1})$. Maximum concentrations of OPs were observed at the middle depth in August, which might be related with photo-oxidation. On the other hand, IBP and DDVP among the OPs were detected in suspended particles, suggesting the relatively active adsorption reactivity. The composition of OPs varied temporally on account of the influence of inflow water from its surrounding areas. In the present study, the observed OPs concentrations seem to be not acute toBic levels to aquatic organisms in Shingu Reservoir, considering the standard monitoring levels of U.S. Environmental Protection Agency and Japan Ministry of Environment.

Distribution of Inorganic N from Fertigated and Broadcast-applied 15N-Urea along Drip Irrigation Domain (점적관수시 관비와 표면시비된 중질소 표지요소의 행동비교)

  • Yoo, Sun-Ho;Jung, Kang-Ho;Ro, Hee-Myong;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.292-301
    • /
    • 2001
  • The objectives of this study were to measure the changes in soil moisture regimes and the distribution patterns of inorganic N derived from the fertigated $^{15}N$-labeled urea, and compare them with the results obtained from broadcast-applied soil under the same drip irrigation domain. In fertigated soil, a $^{15}N$-labeled urea solution of $117mg\;N\;L^{-1}$ was applied by surface drip irrigation for 4 weeks. In broadcast-applied soil, no the other hand, 4 g of $^{15}N$-labeled urea(1.87 g N) mixed thoroughly with 5 kg of soil was placed on the surface of packed soil. Soil water status was controlled by drip irrigation scheduled at soil matric potential of -50 kPa. A calibrated time-domain reflectometry probe was installed in the soil vertically 15 cm apart from a drip emitter to control drip irrigation. About 60% of urea-derived inorganic nitrogen was remained in the top zone between 0 and 10 cm depth of fertigated soil, while, most of the inorganic nitrogen (91%) was accumulated in the top zone of broadcast-applied soil. Of inorganic nitrogen derived from urea, the percentage of $NO_3{^-}$ was much higher for fertigation (99%) than for surface application (62%). The relatively lower recovery of urea-derived inorganic nitrogen of broadcast-applied urea-N (51%) than that of fertigated urea-N (89%) was attributable to enhanced $NH_3$ volatilization.

  • PDF

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

The Impact of the Reclamation and Utilization of Idle Hillside Lands on Future Food Production in Korea (식량(食糧)의 안정적(安定的) 공급(供給)을 위한 산지개발이용의 필요성(必要性)과 전망(展望))

  • Park, Johng-Moon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.213-233
    • /
    • 1979
  • It is generally agreed that the country's population will grow up to the level of 52 million by the year of 2000 and that due the active growth of industry, urbanization and road constructions, sizable portion of existing arable lands will be utilized for other purposes than agriculture in near future. From 1966 to 1977, it was estimated that, the average annual conversion of arable lands to other uses, was 12,909 ha. If this trend persists, it is predicted that from 1978 to 1991 when the 6th Five Years Economic Development Plan will terminate, approximately 181,000 ha of arable lands will be converted for other uses again. On the other hand, it is certain that the increased population (39 million in 1981, 45 million in 1991, 52 million in 2001) and the changes in food pattern along with the enhancement of living standards will bring about the phenomenal increase in demands for not only the staple food but also the livestock products such as meat, milk and eggs, vegetables and fruits. These future increased demands for various foods, naturally mean the increased needs for the expansion of arable lands at the same time. It is predicted that, if more activities than present scale are not taken for the expansion of arable lands, the national food self sufficiency level will drop from 79% in 1977 down to 62% in 1991. To meet the increased food demands in future, there are several ways and means. These will include the increased land use intensity, elevation of unit area yield levels, minimization of conversion of arable lands to other uses and expansion of arable lands through the reclamations of idle hillside lands and tidal lands. Among these, the expansion of arable lands through reclamations of idle hillside lands and tidal lands are more positive measures to cope with the increased production of foods in future. The reclamation of hillside lands demands more attention because it needs more advanced technologies in agronomical and engineering aspects, larger scale fundings and integrated socioeconomic considerations. In agromical aspects, the thechniques for early improvement of chemical and physical properties of soils, proper soil conservation measures and rational cropping systems are of particular importance. As to the financial supports to encourage the farmings in hillside land, much bold fund inputs are essential for the construction of roads, installation of irrigation and drainage facilities, soil conservation mechanisms, which will ensure the stabilized farming with reasonable incomes in the newly reclaimed lands.

  • PDF

Studies on the Epidemiology and Control of Bacterial Leaf Blight of Rice in Korea (한국에 있어서의 벼흰빛잎마름병의 발생생태와 방제에 관한 연구)

  • Lee Kyung-hee
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.111-131
    • /
    • 1975
  • The study has been carried out to investigate the occurrence, damage, characteristics of the pathogen, environmental conditions affecting the disease outbreak, varietal resistance, forecasting, and chemical control of bacterial leaf blight of rice in Korea since 1964. Bacterial leaf blight of rice became a major disease in Korea since 1960. A correlation was found between the annual increase of epidemics and increase of cultivation area of susceptible varieties, Jinheung, Keumnampung etc. Areal damage within the country showed that the more was at southern province, Jeonnam, Gyeongnam and western coast, and at flooded rice paddy. Yield reduction directly related with the amount of infection on upper leaves at heading stage. Fifty per cent of reduction resulted when the lesion area was more than 60 per cent. Less than 20 per cent of lesion area, however, was not affected so much on yield loss One hundred and six isolates collected from all over the country were classified as 8 strains by using 4 different bacteriophages in 1973. It was, however, only two in 1965. There were some specificities on varietal distributions among the strains such as that the Jinheung attacked mainly by strain A, B, C and I, those attack Kimmaze were A, B, H and I. Most strains were found from Tongil except D and E, whereas Akibare was only variety that attacked by strain E. Low temperature, high humidity, heavy rainfall and insutficient daylight favored the disease epidemics. Especially, typhoon and flooding at heading stage were critical factors. The earlier transplanting the more disease was resulted, and more nitrogen fertilizer application accerelated the diseased development in general. The resistance to the disease varied by growing stage of the sane plants. All of recommended varieties in Korea were susceptible to the disease except Norm No. 6 and Sirogane which moderately resistant. The pathogen, Xanthomonas oryzae, was detectable from extract of healthy seedlings that were grown in the field with an heavy infection previous year. The more bacteriophage in irigation water resulted the more disease outbreak, and the existence of more than 50 bacteriophages in 1ml. of irrigation water were necessary to initiate the disease out break. The curves representing occurrence of bacteriophages and disease outbreak were similar with 15 days interval. The survey of bacteriophage occurrence can be utilized in forecasting of the disease two weeks ahead of disease outbreak. Three applications of chemicals, Phenazin and Sangkel, in weekly intervals at the early satage of out-break depressed the symptom development, and increased yield by 20per cent. Proper period for the chemical application was just before the number of bacteriophage reaches 50 in 1ml. of irrigation water.

  • PDF

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF