• Title/Summary/Keyword: 과학 개념 이해

Search Result 872, Processing Time 0.024 seconds

The Influences of the Context of Discrepant Events on the Conceptual Change Process Using Cognitive Conflict Strategy (불일치 사례의 맥락이 인지 갈등 전략을 이용한 개념 변화 과정에 미치는 영향)

  • Choi, Sook-Yeong;Kang, Suk-Jin;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.445-452
    • /
    • 2009
  • In this study, the influences of the context of discrepant events on the conceptual change process using cognitive conflict strategy were investigated in terms of students' cognitive and motivational variables such as cognitive conflict, situational interest, attention, effort, conceptual understanding. A preconception test was administered to 536 seventh graders. A test of response to a discrepant event and a situational interest questionnaire were then administered. The context of discrepant events, either scientific or everyday, was randomly presented to the subjects. After learning the concept of density, the tests of attention, effort, and conceptual understanding were administered. The reponses of 194 students who had been found to possess the target misconception were analyzed. The results revealed that the scientific-context discrepant event induced higher cognitive conflict than everyday-context one. The context of discrepant events, however, did not show significant correlations with situational interest, attention, effort, and/or conceptual understanding. The result of path analysis indicated that the context of discrepant events both directly influenced cognitive conflict and indirectly influenced conceptual understanding via cognitive conflict.

Development and Application of Peer Instruction Including Interactive Experiments Focused on Reflection of Light (빛의 반사 개념 이해를 위한 상호작용적 실험이 포함된 동료교수법 교수·학습 자료의 개발 및 적용)

  • Lee, Ji Won;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.37 no.1
    • /
    • pp.186-202
    • /
    • 2013
  • The purpose of this study is to develop and apply materials to teach about reflection of light by peer instruction. These which consist of both hands-on experiments and ConcepTests based on students' preconceptions found in previous researches are inducing active interaction between peers during instruction. Data from 29 university students were rate of correct answer of pre and post tests, results of conceptests before and after peer discussion, homework for strengthening their conceptual changes, and RTOP result for analysis of learners' perception about this method. Learners' preconceptions on reflection of light and position of image are changed effectively into scientific concepts. And they evaluate this teaching method helps conceptual understanding and interaction of an instructor and learners.

  • PDF

The Influences of Students' Motivational Characteristics on the Processes of Concept Learning Using A Discrepant Event (학습자의 동기적 특성들이 불일치 사례를 사용한 개념 학습 과정에 미치는 영향)

  • Choi, Sook-Yeong;Kim, Eun-Kyoung;Kang, Suk-Jin;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.414-422
    • /
    • 2009
  • In this study, we investigated the influences of students' motivational characteristics on the processes of learning density concept using a discrepant event. The participants were 642 seventh graders from two middle schools. Tests of failure tolerance, self-efficacy and mastery/performance goal orientation were administered as pretests. A preconception test was also administered. The intervention was the students' individual study of the density concept with a worksheet that was designed to incorporate the major steps of conceptual change learning. The tests of attention, effort and conceptual understanding were administered as post-tests. The responses of 203 students who had been found to possess the target misconception were analyzed. The results of a path analysis revealed that students' motivational characteristics variables did not influence cognitive conflict. Failure tolerance and mastery goal orientation, however, influenced conceptual understanding via situational interest, attention and effort. Self-efficacy influenced conceptual understanding via effort. Performance goal orientation negatively influenced conceptual understanding via attention and effort. Cognitive conflict influenced conceptual understanding directly as well as indirectly via situational interest.

The Effects of Concept Mapping Strategy in the Undergraduate General Chemistry Course (대학 일반 화학 수업에서 개념도 활용 전략의 효과)

  • Koh, Han-Joong;Doh, Eun-Jeong;Kang, Suk-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.186-192
    • /
    • 2007
  • In this study, the effects of concept mapping on the preservice elementary teachers' achievement, conceptual understanding, anxiety toward science, and science teaching efficacy belief were investigated in the undergraduate general chemistry course. The aptitude-treatment interaction (ATI) between preservice teachers' learning approach and concept mapping strategy was also investigated. Sixty-nine freshmen from a university of education were assigned to a control group and a treatment group. Tests regarding students' learning approach, anxiety toward science, and science teaching efficacy belief were administered as pretests. Treatment lasted for 9 weeks. In every class, students in the treatment group constructed concept maps, while those in the control group solved the problems of the textbook after the lecture. After the instructions, tests of achievement, conceptual understanding, anxiety toward science, and science teaching efficacy beliefs were administered. The results indicated that students in the treatment group significantly outperformed those of the control group in the achievement test. In the conceptual understanding and the science teaching efficacy beliefs, however, no statistically significant differences were found between two groups. Students of the treatment group showed significantly higher anxiety than their counterpart in the test of anxiety toward science. No aptitudetreatment interaction between students' learning approach and the concept mapping strategy was found.

Relationship between Conceptual Understanding and Mapping Errors Induced in Learning Chemistry Concept with Analogy (비유를 사용한 화학 개념 학습에서 유발되는 대응 오류와 개념 이해도의 관계)

  • No, Tae-Hui;Kim, Gyeong-Sun;Sin, Eun-Ju;Han, Jae-Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.486-493
    • /
    • 2006
  • study investigated the relationship between conceptual understanding and mapping errors induced in learning chemistry concept with two analogies presented in current science textbooks. Each of the two groups from 7th graders (N=260) in three middle schools studied with one of the analogies, and then a conception test and a mapping test were administered. Analyses of the results indicated that students conceptual understanding has a significant relationship with their understanding about the mapping. The scores of the conception test and the mapping test for the unshared attributes were lower than those for the shared attributes. Five types of mapping errors were also identified: overmapping, mismapping, failure to map, rash mapping, and artificial mapping. Many representative misconceptions were found to be associated with their mapping errors. Educational implications are discussed.

The Effects of Argumentation-based General Chemistry Laboratory on Preservice Science Teachers' Understanding of Chemistry Concepts and Writing (논의가 강조된 일반화학실험이 예비교사의 글쓰기 능력 및 화학개념 이해에 미치는 효과)

  • Nam, Jeong-Hee;Koh, Mi-Rye;Bak, Deok-Chan;Lim, Jai-Hang;Lee, Dong-Won;Choi, Ae-Ran
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1077-1091
    • /
    • 2011
  • The purpose of this study was to examine the effects of argumentation-based general chemistry laboratory on preservice science teachers' chemistry concepts understanding and writing. Five topics about argumentation-based general chemistry laboratory activities were developed using Science Writing Heuristic (SWH) approach. Summary Writing Test, and Chemistry Concepts Test were developed as tools to examine the effects of this approach. Both Argumentation-based general chemistry laboratory activities and traditional general chemistry laboratory activities were implemented for the experimental group (23 students), and traditional general chemistry laboratory activities were implemented for the comparative group (16 students). Results of this study indicated that there were significant differences in both groups' chemistry concepts understanding and summary writing. The experimental group showed significantly higher mean score than comparative group in chemistry concepts understanding and summary writing. In the analysis of the sub-component of Summary Writing, there were no significant difference between both groups in 'Big Idea.' However, the experimental group gained significantly higher mean score in 'argumentation,' 'understanding of science concepts,' and 'rhetoric structure.' The results showed that argumentation-based general chemistry laboratory programs were effective in achieving chemistry concepts understanding and writing in general chemistry laboratory.

The Effect of Science History Program Developed by Genetic Approach on Student's Conception toward Particulate Nature of Matter and Understanding about the Nature of Science (기원론적 접근법에 따라 개발한 과학사 프로그램이 학생들의 입자론적 물질관 및 과학의 본성에 대한 이해에 미치는 영향)

  • Yoo, Mi-Hyun;Yeo, Sang-Ihn;Hong, Hun-Gi
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.213-222
    • /
    • 2007
  • In this study, science history program was developed to enhance student's concepts toward the particulate nature of matter and the understanding about the nature of science. And the effects of its application was investigated in the lesson of ‘Composition of Matter' in middle school science class. This science history program was based on genetic approach and included the contents from the old Greek natural philosophers to Avogadro. Before instruction, the test of understanding about nature of science was administered, and the science scores of the previous course were obtained, which were used as covariates. During 24 class hours, this study was conducted with two classes(experimental and comparison group) in a middle school in Seoul. The experimental group was received lessons by science history programs and the comparison group was received traditional lessons. After instruction, the scientific concept test, the test of understanding about nature of science were administered. The result of this study indicates that the scientific concept scores of experimental group were significantly higher than comparison group at p <.01 level of significance. It means that the students in experimental group has more sound conceptions about the particulate nature of matter and less mis conceptions about matter than the students in comparison group. However, there was no significant difference between two groups in the score of understanding about the nature of science.

A Study of Pre-Service Secondary Science Teacher's Conceptual Understanding on Carbon Neutral: Focused on Eye Tracking System (탄소중립에 관한 중등 과학 예비교사들의 개념 이해 연구 : 시선추적시스템을 중심으로)

  • Younjeong Heo;Shin Han;Hyoungbum Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.261-275
    • /
    • 2023
  • The purpose of this study was to analyze the conceptual understanding of carbon neutrality among secondary school science pre-service teachers, as well as to identify gaze patterns in visual materials. For this study, gaze tracking data of 20 pre-service secondary school science teachers were analyzed. Through this, the levels of conceptual understanding of carbon neutrality were categorized for the participants, and differences in gaze patterns were analyzed based on the degree of conceptual understanding of carbon neutrality. The research findings are as follows. First, as a result of performing modeling activities to predict carbon emissions and removals until 2100 using the concept of '2050 carbon neutrality,' 50% of the participants held a conception that carbon emissions would continue to increase. Additionally, 25% of the participants did not properly understand the causal relationship between net carbon dioxide emissions and cumulative concentrations. Second, the gaze movements of the participants regarding visual materials related to carbon neutrality were significantly influenced by the information presented in the text area, and in the case of graphs, the focus was mainly on the data area. Moreover, when visual data with the same function and category were arranged, participants showed the most interest in materials explaining concepts or visual data placed on the left side. This implies a preference for specific positions or orders. Participants with lower levels of conceptual understanding and inadequate grasp of causal relationships among elements exhibited notably reduced concentration and overall gaze flow. These findings suggest that conceptual understanding of carbon neutrality including climate change and natural disaster significantly influences interest in and engagement with visual materials.

Developing 3D Simulation Contents for Understanding of Light and Shadow (빛과 그림자 개념 이해를 돕는 3차원 시뮬레이션 콘텐츠 개발 및 적용)

  • Lee, Ji Won;Yoon, Hayoung;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.703-717
    • /
    • 2014
  • In physics, metal simulation is an important mechanism to understand and create concepts. If students have difficulty in mental simulation, understanding the concept of physics also gets difficult. By providing guide for spatial manipulation to students, 3D simulation contents can help them understand the concept of physics. In this study, the 3D simulation contents developed to help understanding the concept of light going straight and shadow is applied to 20 college students. The results, Hake gain is 0.93, showing high level of understanding about the class. In addition, through mental simulation, students predict the phenomenon well about the new context. This is shown that students' understanding of concept through 3D simulation contents are carried out well.

  • PDF

Earth Science Teachers' Conceptual Types about Image Formation through a Telescope (망원경의 상 형성에 대한 지구과학교사들의 개념 유형)

  • Lee, Seok-Woo;Yim, In-Sung;Choe, Sung-Urn
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.855-868
    • /
    • 2009
  • The purpose of this study was to investigate how teachers understand the principle of image formation of stars through a telescope. This study was conducted by using explanatory paper questionnaires given to 101 earth science teachers in the areas of Gyunggi province and Seoul. The questionnaires were cross-analyzed by three experts in earth science education. Result indicated that most of the participating teachers did not have systematic concepts about the process of making an image formed by a convex lens. Particulary, they did not sufficiently understand the concepts of an image and the functions of a screen. Furthermore, only 3% of the participants possessed the scientific concepts about the image formation principle of a star through the telescope. Most of the teachers seem to have non-scientific or alternative concepts about the image formation, which was only understanded with the fragmented characteristics about light and convex lens.