• Title/Summary/Keyword: 과학위성 2호

Search Result 248, Processing Time 0.024 seconds

One Year of GOCI-II Launch Present and Future (GOCI-II 발사 1년, 현재와 미래)

  • Choi, Jong-kuk;Park, Myung-sook;Han, Kyung-soo;Kim, Hyun-cheol;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1229-1234
    • /
    • 2021
  • GOCI-II, which succeeded the mission of GOCI, was successfully launched in February 2020 and is in operation. GOCI-II is expected to be highly useful in a wide range of fields, including detailed changes in the coastal seawater environment using improved spatial and spectral resolution, increased number of observation and full disk observation mode. This special issue introduces the assessment of the current GOCI-II data quality and the studies on the accuracy improvement and applications at this time of one year after launch and data disclosure. We expect that this issue can be an opportunity for GOCI-II data to be actively utilized not only in the ocean but also in various fields of land and atmosphere.

MIRIS 우주관측 카메라 Calibration

  • Park, Yeong-Sik;Lee, Dae-Hui;Jeong, Ung-Seop;Mun, Bong-Gon;Lee, Deok-Haeng;Pyo, Jeong-Hyeon;Park, Gwi-Jong;Park, Seong-Jun;Nam, Uk-Won;Lee, Chang-Hui;Park, Jang-Hyeon;Han, Won-Yong;Lee, Seung-U;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.71-71
    • /
    • 2012
  • MIRIS(Multipurpose InfraRed Imaging System)는 과학기술위성 3호의 주 탑재체이며 우주관측카메라, 지구관측카메라, 전장박스로 구성되어 있다. MIRIS 우주관측 카메라는 0.9-2.0 ${\mu}m$ 영역에서 3.67 deg. ${\times}$ 3.67 deg. FOV로 우리 은하평면 survey 관측과 우주배경복사(CIB) 관측을 수행할 것이다. MIRIS는 2월 말에 비행모델 개발을 완료하였고, 향후 위성체와의 조립을 진행하고, 러시아 Dnepr 발사장으로 옮겨 2012년 하반기에 발사 예정이다. MIRIS 우주관측카메라에는 Teledyne PICNIC(256${\times}$256 pixel) array를 사용하였고, Dark current, Linearity, Read-out Noise, Gain, Flat 영상 측정 등의 calibration을 수행하였다. 본 발표에서는 Calibration 결과에 대해 논의 하고자 한다.

  • PDF

Study on Applying GPS Positioning Technique to Cannon Laying (GPS 측위기술의 포 방열 적용 연구)

  • 조정호;박종욱;박필호;임형철;최만수;권영철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.52-59
    • /
    • 2001
  • In this paper, we have proposed a capability of applying Global Positioning System(GPS) to cannon laying. High precision GPS positioning can be used for measuring precise positions and angles. Therefore, we have tested on applying GPS positioning technique to measurement of positions and angles, which related to cannon laying. First of all, we have determined a GPS reference position using various positioning methods. Then we have carried out several tests that are process of taking corner angles between neighboring two vectors. Each vector can be calculated by post/real time positioning of two GPS antennas placed on the both ends of the howitzer. The Comer Angles from Post processing(CAP) are compared with the other Corner Angles from Real time positioning(CAR). As the results, we have an agreement between CAP and CAR within 0.25 mil average, 0.29 mil standard deviation. Finally, we have discussed about the capabilities and problems in artillery arrangement using GPS.

  • PDF

Ground station Baseband Controller(GBC) Development of STSAT-2 (과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발)

  • Oh Dae-Soo;Oh Seung-Han;Park Hong-Young;Kim Kyung-Hee;Cha Won-Ho;Lim Chul-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.482-485
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas and count number of received data packets among demodulated audio signals from three antennas and also set data flow path to good-receiving antenna automatically In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and CBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

Ground station Baseband Controller(GBC) Development of STSAT-2 (과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발)

  • Oh, Dae-Soo;Oh, Seung-Han;Park, Hong-Young;Kim, Kyung-Hee;Cha, Won-Ho;Lim, Chul-Woo;Ryu, Chang-Wan;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.116-118
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. After launch Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas. and GBC count number of received data packets among demodulated audio signals from three antennas and set data flow path to good-receiving antenna automatically. In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and GBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

  • PDF

SENSITIVITY CALCULATIONS FOR THE COSMIC IR BACKGROUND OBSERVATIONS BY MIRIS (과학기술위성 3호 다목적 적외선 영상시스템 적외선 우주배경복사 관측 감도 계산)

  • Lee, Dae-Hui;Lee, Seong-Ho;Han, Won-Yong;Park, Jang-Hyeon;Nam, Uk-Won;Jin, Ho;Yuk, In-Su;Park, Yeong-Sik;Park, Seong-Jun;Lee, Hyeong-Mok;Park, Su-Jong;Matsumoto, Toshio;Cooray, Asantha
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.177-181
    • /
    • 2007
  • We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ($0.9{\sim}1.2um$) and H ($1.2{\sim}2.0um$) band with a $4{\times}4$ degree field of view to obtain the large scale structure (${\sim}3$ degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ${\sim}9\;nW\;m^{-2}\;sr^{-1}$ (I band) and ${\sim}6\;nW\;m^{-2}\;sr^{-1}$ (H band), which is appropriate to observe the large scale structure of CIRB.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.

Memory Scrubbing for On-Board Computer of STSA T-2 (과학기술위성 2호 탑재컴퓨터의 메모리 세정 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.519-524
    • /
    • 2007
  • The OBC(on-board computer) of a satellite which plays a role of the controller for the satellite should be equipped with preventive measures against transient errors caused by SEU(single event upset). Since memory devices are pretty much susceptible to these transient errors, it is essential to protect memory devices against SFU. A common method exploits an error detection and correction code and additional memory devices, combined with periodic memory scrubbing. This paper proposes an effective memory scrubbing scheme for the OBC of STSAT-2. The memory system of the OBC is briefly mentioned and the reliability of the information stored in the memory system is analyzed. The result of the reliability analysis shows that there exist optimal scrubbing periods achieving the maximum reliability for allowed overall scrubbing overhead and they are dependent on the significance of the information stored. These optimal scrubbing periods from a reliability point of view are derived analytically.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.