• Title/Summary/Keyword: 과하중 효과

Search Result 141, Processing Time 0.031 seconds

Prediction of Change in Ground Condition Ahead of Tunnel Face Using Three-dimensional Convergence Analysis (터널 3차원 내공변위의 해석을 통한 막장전방 지반상태변화 예측)

  • 김기선;김영섭;유광호;박연준;이대혁
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.476-485
    • /
    • 2003
  • The purpose of this study is to present an analysis method for the prediction of the change of ground conditions. To this end, three-dimensional convergence displacements is analyzed in several ways to estimate the trend of displacement change. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak fracture zone exists a specific trend of displacement change is known to be occurred from the results of the existing researches. The existence of a discontinuity, whose change in front of the tunnel face, can be predicted from the ratio of L/C (longitudinal displacement at crown divided by settlement at crown) etc. Therefore, the change of ground condition and the existence of a fracture zone ahead of tunnel face can be predicted by monitoring three-dimensional absolute displacements during excavation, and applying the methodology presented in this study.

Strength and Mechanical Characteristics of Fiber-Reinforced Concrete (기유(機維)콘크리트의 강도(强度) 및 역학적(力學的) 특성(特性)에 관한 연구(硏究))

  • Oh, Byung Hwan;Lee, Hyung Joon;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 1989
  • Recently, a growing attention is paid to the development of new construction materials. The fiber-reinforced concrete is recognized as one of the most promising new construction materials. A comprehensive experimental study was conducted to explore the mechanical behavior of steel fiber reinforced concrete. The major variables in the experiment were the fiber contents and the lengths of steel fibers. The flexural, tensile, and compressive behavior of steel fiber reinforced concrete were investigated. The present study shows that the strength and ductility are remarkably increased with on increase of fiber content. The rate of strength increase due to steel fibers was found to be the highest in tension, the middle in flexure, and the lowest in compression. This indicates that the steel fibers play a major role in increasing the tensile capacity. The present study gives a thorough examination on the mechanical behavior of steel fiber reinforced concrete and allows more realistic use and design of steel fiber reinforced concrete.

  • PDF

Modeling Method of Slabs in RC Flat-Plate Structures Under Lateral loading (횡하중을 받는 RC 무량판 구조의 슬래브 모델링 기법)

  • 최정욱;송진규;이수곤;김진상
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.615-622
    • /
    • 2002
  • To reasonably predict the behaviors for RC flat-plate structures, analysis model considering the flexural stiffness of slabs is required. FEMA 273 and ACI 318-99 refer to theoretical analysis models of two-way slab systems under lateral loading but the actual application method is not suggested. In this study, the modeling and application methods of the flat-plates using effective beam concept are suggested. The results of this study are as follows. 1) The effective beam width model suggested in this study is very useful to model flat-Plate structures subjected to seismic loading for three dimensional analysis 2) The result of analysis for idealized flat-plate example using the effective beam widths considering the effect of the slab crack is shown upper value for displacements. Whereas the model considering effective beam width coefficients only is shown upper value for unbalanced moments

A Study on the Evaluation of Load Carrying Capacity of Highway Bridges based on Structural Reliability Methods (구조신뢰성(構造信賴性) 방법에 의한 도로교(道路橋)의 내하력(耐荷力) 평가(評價)에 관한 연구(硏究))

  • Shin, Jae Chul;Cho, Hyo Nam;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1987
  • This study is directed for the evolution of the rational approaches to the systematic evaluation of the load carrying capacity of bridges based on the practical and second moment reliability methods. A new approach for the evaluation of load carrying capacity of exsisting bridges is proposed in this study. The key idea behind this approach is in the fact that the load carrying capacity of an existing bridges under extreme traffic truck loadings may be measured by evaluating and classifying the reliability state of the bridge in terms of reliability index(${\beta}$). The rating formulas developed in this study are applied for the evaluation of load carrying capacity of the several actual deteriorated bridges inspected and tested for the capacity rating, and the results are compared with those calculated by using the current rating formulas. It may be concluded that the proposed rating formulas which is derived based on reliability methods, have to eventually replace the current rating formula when the basic statistical data for the resistance and load effects become available in the near future.

  • PDF

A Study on the Structural Behavior of LB-DECK Panel Considering Rebar-Arrangement in Site (현장 배근이 LB-DECK 패널의 구조거동에 미치는 영향)

  • Lho, Byeong-Cheol;Cho, Gyu-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • The objective of this study is to verify whether the composite action is sufficiently strong to withstand at the interface and the structural behavior of LB-DECK panel with field concrete slab strengthened with main reinforcing bars. Static and fatigue tests are performed for LB-DECK panels with varied shapes and amounts of rebars, and the results are compared with those of field concrete panel(FCP). The test results indicate that the LB-DECK panel with 1.5 times of more rebars inside significantly increase the overall stiffness. LB-DECK penel usually shows on average 52.1 percent of improved stiffness compared with the FCP. The fatigue test results also show that the LB-DECK panel can withstand two-million cycles of repeated loads without any damage.

Finite Element Analysis on the Behavior of Soyanggang Dam and its Comparison with Observed (소양강(昭陽江)댐의 거동(擧動)에 대한 유한요소해석(有限要素解析)과 실측치(實測値)와의 비교(比較))

  • Kim, Sang Kyu;Lim, Heui Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.141-150
    • /
    • 1987
  • The Soyanggang Dam completed in 1973 was well instrumented during construction period. The measured results for stresses and movements of the embankment have already been published elsewhere, but theoretical analyses have not been made until now. This study intends to analyze the stress and deformation behavior of the embankment numerically which have been subjected to the load of materials during construction and water load during impounding. The constitutive law used for the analyses is hyperbolic model developed by Duncan et al., and a nonlinear incremental finite element analysis simulating its contruction steps is. used in this study. Hyperbolic parameters for each Zone are estimated from literature. The results obtained from the theoretical analyses clearly show deformation characteristics and stress vectors in arbitrary section of the dam. The analytical results ate well agreed with the measured deformations at the maximum cross section, however, there are some discrepancy in horizontal movements and in stresses generated in the core zone. From the numerical analyses and its comparison with the measured values, it is charaterized that relatively large construction settlements occurred in core zone, overburden pressure in the core zone was considerably reduced by arching effect, and tension zones might occur near both abutments because of the large horizontal displacement.

  • PDF

Experiment of Flexural Behavior of Prestressed Concrete Beams with External Tendons according to Tendon Area and Tendon Force (강선량 및 긴장력에 따른 외부 강선을 가진 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Yang, In-Hwan;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.513-521
    • /
    • 2009
  • Recently, the externally prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external unbonded tendon is different from that of normal bonded PSC beams in that the slip of tendons at deviators and the change of tendon eccentricity occurs as external loads are applied in external unbonded PSC beams. The purpose of the present paper is therefore to evaluate the flexural behavior by performing static flexural test according to tendon area and tendon force. From experimental results, before flexural cracking, there was no difference between external members and bonded members. However, after cracking, yielding load of reinforcement, ultimate load, and the tendon stress of external members was lower than that of bonded members. For the relationship of load-tendon stress, the increasing of tendon strain was inversely proportional to the initial tendon force. However, even if the initial tendon force was large, the tendon strain with small effective stress was smaller than that with large effective stress. The concrete compressive strain was proportional to the effective stress of external tendon. From the comparison between test results and codes, the ACI-318 could not consider the effect of tendon force or effective stress, and especially the results of ACI-318 were very small, so it was very conservative. And the AASHTO 1994 could be influenced on the tendon area, initial force and effective stress, but as it was made on the basis of internal unbonded tendon, its results were much larger than the test results. For this reason, the new correct predict equation of external tendon stress will be needed.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

A Study on the Crack Width of the Partially Prestressed Concrete Member with Rectangular Section (부분(部分)프리스트레스된 구형(矩形)콘크리트부재(部材)의 균열크기에 관한 연구(硏究))

  • Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.133-139
    • /
    • 1985
  • The purpese of this research is to experimentally verify the effect of prestressing on the control of cracks and on the possible increase of load capacity of the members by testing five beams with same cross section and same reinforcement ratio but with different amounts of prestressing. The test results indicate that the ultimate strength of prestressed concrete beams is only slightly higher than that of unprestressed concrete beams. It may be however need more experimental results to come to this conclusion. But it can be clearly seen that the effect of prestressing on the crack width is remarkable and that the reduction of about to 50% in crack width under service loads can be easily achieved by introducing small prestressing (about 25% of a fully prestressing).

  • PDF

Stress Distribution on Construction Joint of Prestressed Concrete bridge Members with Tendon Couplers (텐던커플러를 사용한 프리스트레스트 콘크리트 교량부재의 이음부 응력분포 특성)

  • 오병환;채성태;김병석;이만섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, prestressed concrete(PSC) bridge structures with many repetitive spans have been widely constructed using the segmental construction method in many countries. In these segmentally constructed PSC bridges, there exist many construction joints which is required coupling of tendons or overlapping of tendons to introduce continuous prestress through several spans of bridges. The purpose of this paper is to investigate in detail the complicated stress distributions around the tendon coupled joints in prestressed concrete girders. To this end, a comprehensive experimental program has been set up and a series of specimens have been tested to identify the effects of tendon coupling. The present study indicates that the longitudinal and transverse stress distributions of PSC girders with tendon couplers are quite different from those of PSC girders without tendon couplers. It is seen that the longitudinal compressive stresses introduced by prestressing are greatly reduced around coupled joints according to tendon coupling ratios. The large reduction of compressive stresses around the coupled joints may cause deleterious cracking problems in PSC girder bridges due to tensile stresses arising from live loads, shrinkage and temperature effects. The analysis results by finite element method correlate very well with test results observed complex strain distributions of tendon coupled members. It is expected that the results of this paper will provide a good basis for realistic design guideline around tendon coupled joints in PSC girder bridges.