• 제목/요약/키워드: 과부하 관거

검색결과 18건 처리시간 0.038초

Fluent 모형을 이용한 과부하 원형 맨홀에서의 손실계수 계산 (Calculation of Head Loss Coefficient at Surcharged Circular Manhole Using Fluent Model)

  • 김정수;김종우;김형민;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1828-1832
    • /
    • 2008
  • 우수 관거 시스템에서 흐름은 중력에 의해서 흐르고 개수로 흐름과 같이 처리된다. 그러나 유입유량이 관거의 만관 상태를 초과하거나 하류 흐름의 제한 때문에 발생하는 역류의 영향을 받는다면, 우수 관거 시스템은 과부하(surcharge) 상태의 압력흐름이 된다. 개수로 상태에서 맨홀에서의 수두 손실은 일반적으로 무시되지만, 과부하 맨홀에서의 수두손실은 중요하며, 우수 관거 시스템의 전체 손실에 중요한 부분을 차지하게 된다. 이러한 현상은 여러 개의 맨홀을 가지는 우수 관거 시스템에서 특히 중요한 사항이 된다. 현재 계획 또는 설계단계에서 수행되고 있는 관거 시설의 수리계산에서는 연결관의 마찰손실만을 감안하여 수행하고 있으며, 맨홀에서의 수두손실은 고려되지 않는 실정이다. 본 연구에서는 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 모형을 이용하여 과부하 원형 맨홀에서의 흐름특성을 수치모의 하였으며, 맨홀내 손실수두의 변화를 계산하여 손실계수를 산정하였다. 계산된 손실계수는 수리모형 실험을 통하여 산정된 손실계수와 비교하였다. 수치 모형에 의해서 산정된 손실계수 값이 수리모형 실험에 의해서 산정된 손실계수 값보다 약간 크게 산정되었다. 앞으로 난류 모형의 매개 변수들의 조정을 통한 정확한 수치모의 연구가 필요하다고 판단된다.

  • PDF

Fluent 모형을 이용한 4방향 합류맨홀의 흐름특성 분석 (Analysis of Flow Characteristics in Four-Way Combining Manholes Using Fluent Model)

  • 김채린;김정수;한정석;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.360-360
    • /
    • 2016
  • 도시 배수 시스템에서 유입유량이 관거의 만관 상태를 초과하거나 하류 흐름 때문에 발생하는 역류의 영향을 받는다면, 관거 시설은 과부하(surcharge) 상태인 압력흐름이 된다. 중력흐름 상태에서 맨홀의 수두 손실은 일반적으로 무시되지만, 과부하 맨홀에서의 수두 손실은 중요하며, 우수 관거 시스템의 전체 손실에 상당한 부분을 차지하게 된다. 이러한 현상은 여러 개의 맨홀을 가지는 도시 배수 시스템에서 특히 중요한 사항이 된다. 따라서 관거 시설 내 맨홀에서의 수리적 에너지 손실에 대한 연구와 보다 구체적인 설치 기준의 제시가 요구되고 있는 실정이다. 특히 배수관거 시스템의 하류부에 설치되는 4방향 합류맨홀은 맨홀으로 유입되는 주 유입관과 측면 유입관의 유입흐름의 영향으로 맨홀 내의 유수교란에 의한 흐름특성이 복잡하므로 이에 따른 흐름특성의 변화를 분석하고 에너지 손실을 연구할 필요가 있다. 그러므로 우수 관거 시스템의 우수 배제 능력을 증가시켜 도심지의 침수를 방지하기 위한 관거시설의 적정 설계 기준이 필요하며, 합리적인 설계 기준을 제시하기 위하여 과부하 4방향 합류 맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 수리모형 실험의 물질적, 시간적 한계를 극복하고 과부하 4방향 합류맨홀에서의 복잡한 흐름특성을 분석하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 FLUENT 6.3 모형을 선택하였다. 합류맨홀 및 접합 관거의 기하 모형의 격자망은 수치해석의 안정성 확보를 위하여 맨홀과 연결관의 합류부분에서는 사면체 격자로 구성하고 합류부분을 제외한 구간에서는 6면체 격자로 구성하였으며, 각 격자의 면은 가능한 사각형 또는 삼각형의 형태를 취하도록 하였다. 합류맨홀 모형의 벽면에는 No-Slip 경계조건을 부여하였으며, 유입부에는 속도 조건, 유출부와 맨홀의 자유수면 부분의 경계에서는 대기압 조건을 부여하였다. 수리모형 실험 결과와 비교하기 위하여 유입 관거의 유속 조건을 수리 모형실험의 조건과 동일하게 채택하여 수치모의를 수행하였다. 수치모형의 적용 결과 맨홀 내에서의 유속변화, 수심변화 및 압력변화에 대해서는 수리모형 실험 결과와 유사한 경향을 나타내고 있으며, 수치모형에 의하여 산정된 4방향 합류맨홀에서의 손실계수 값과 수리모형 실험에 의하여 산정된 손실계수 값이 유사하므로 우수 관거 시스템의 4방향 합류맨홀에서의 흐름 변화 및 손실계수 예측하는 데에 있어서 FLUENT 6.3 모형은 사용 가능하리라 판단된다.

  • PDF

맨홀의 손실을 고려한 SWMM 모형의 적용 (Application of SWMM Model Considering Head Loss at Manhole)

  • 최현수;김정수;임창수;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.654-658
    • /
    • 2010
  • 과부하 맨홀의 손실계수에 대한 연구는 국내외에서 지속적으로 수행되어 왔다. 그러나 실제 하수관거 설계 및 평가에 이러한 손실계수의 적용여부에 따른 맨홀의 흐름변화에 대한 연구는 이루어진바 없다. 따라서 본 연구에서는 실무에서 하수관거 설계 및 평가 시 가장 많이 사용되는 상용프로그램 SWMM 모형을 활용하여 손실계수 적용 여부에 따른 맨홀의 수두변화를 비교 하였다. 손실계수의 영향을 확인하기 위해 가상유역을 설정하였으며, 이때 가상유역 내에는 4개의 합류맨홀을 포함하고 있고, 그 외 맨홀은 중간 맨홀 및 $90^{\circ}$ 접합맨홀로 이루어져 있다. 손실계수는 윤세의 등(2008, 2009, 2010)이 제시한 값을 적용하였다. 과부하 맨홀에 손실계수를 적용한 결과 맨홀 내 수심은 증가하였고 동수경사선이 높아짐으로써 손실계수 적용 후 침수가 발생하는 맨홀도 나타났다. 따라서 도시유역의 하수관거 평가 시 맨홀에 과부하가 발생하는 경우에는 손실계수를 적용 후 평가가 이루어져야 할 것으로 판단된다.

  • PDF

과부하 사각형 맨홀에서의 수리학적 상사성 분석 (Analysis of Hydraulic Similarity at Surcharged Square Manhole)

  • 김정수;윤영노;한정석;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.510-514
    • /
    • 2008
  • 우수 관거 시스템에서 맨홀의 설치 시 연결관 내부와 맨홀의 내부는 여러 가지 수리학적 조건이 다르므로 수두손실의 발생이 필연적일 수밖에 없다. 현재 계획 또는 설계단계에서 수행되고 있는 관거 시설의 수리계산에는 연결관 내에서의 마찰손실만을 고려하여 설계를 수행하고 있으며, 맨홀에서의 수두 손실은 거의 대부분 고려되지 않고 있다. 단지 맨홀에서의 수두손실을 저감하기 위하여 하수도시설기준(환경부, 2005)상의 단차 및 인버트 규정만 있을 뿐, 우수 관거 설계에 직접적으로 필요한 적절한 맨홀의 손실계수가 제시되지 않고 있는 실정이다. 국외에서는 축소 수리 모형을 이용한 실험과 수치해석 기법 등을 이용하여 맨홀에서의 손실계수를 산정하는 연구가 꾸준히 진행되어 왔으나 국내에서는 맨홀의 손실계수 산정에 관한 연구가 미흡한 실정이며, 더욱이 맨홀에서의 손실계수 산정을 위한 상사성 적용에 관한 연구는 전무한 실정이다. 그러므로 본 연구에서는 맨홀의 축척 변화에 따른 손실계수의 변화를 분석하기 위하여 하수도시설기준(환경부, 2005)의 특 1호(사각형) 맨홀을 각각 1/2과 1/5로 축소 제작하고, 수리실험 장치를 제작하였다. Froude 상사 법칙을 적용하여 1/2의 축소 모형의 실험 조건을 1/5 축소 모형의 값으로 환산하였으며, 각 축소 모형에 대한 수리 실험을 실시하였다. 과부하된 맨홀의 손실계수를 예측하는데 Froude 상사법칙의 사용 가능성을 확인 하였으며, 1/2 축소 모형과 1/5 축소 모형에서 산정된 손실계수 값이 0.45로 일치하고 있으므로 우수 관거 시스템의 맨홀 설계 시, 축소 수리 모형실험에서 산정된 손실계수의 직접적인 적용이 가능하다고 판단된다.

  • PDF

합류맨홀에서 개선형 인버트의 적용 (Application of Improved Invert in Combining Manhole)

  • 조준범;이민성;임창수;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.287-287
    • /
    • 2018
  • 우수관거 시설에서 맨홀은 관거의 접합을 위해 반드시 설치되어야 하는 중요한 요소이다. 이러한 맨홀 접합부에서는 유입관으로 유입되는 유량의 급격한 확대와 유출관으로 배수되는 유량의 급격한 축소 등 흐름의 복잡한 변화가 발생한다. 맨홀에서의 복잡한 흐름은 설계강우를 초과하지 않는 강우량에서 과부하 조건을 형성하며 도심지 침수의 심각한 영향을 미친다. 특히 여러 관이 접합되어 있는 합류맨홀의 경우 유출관거로의 원활한 배수가 유도되지 않을 뿐 아니라 다양한 방향의 흐름이 서로 상충하며 급격한 에너지 손실을 유발한다. 도심지 중 하류부에서 주로 발생하는 침수피해는 복잡한 우수관거 시설의 구성에 따른 합류맨홀의 증가로 인해 그 규모가 늘어나는 추세이다. 바닥이 평평한 기본형태의 맨홀에서 발생되는 과부하 흐름과 여러 유량 조건에서의 에너지 손실에 관한 연구는 지속적으로 수행되어왔다. 최근 맨홀 내부에 흐름을 유도시켜주는 인버트를 설치하여 에너지 손실을 저감하려는 연구가 활발히 이루어지고 있지만 이를 실제 도시지역에 적용하여 침수해석이나 관거 배수능력 평가를 수행하기 위한 필요한 기초자료는 미비한 실정이다. 본 연구에서는 인버트가 설치된 개선형 4방향 합류맨홀의 유량 조건을 다양하게 변화시키며 유입유량 조건에 따른 개선형 맨홀의 손실계수를 분석하였다. 유량 조건은 세 개의 유입관에서 각각 설계유량 $1{\ell}/s$의 유량이 유입되는 총 유입유량 $3{\ell}/s$를 기준으로 각 유입관의 유입유량을 10%씩 변화시킨 40case의 유량 조건을 선정하였다. 이렇게 선정된 유량 조건은 경우에 따라 중간 맨홀, 3방향 합류맨홀 또는 4방향 합류맨홀의 흐름을 다양하게 나타내었으며, 40case의 손실계수를 분석하여 모든 맨홀 접합 조건에서의 손실계수를 파악할 수 있었다. 합류맨홀에서의 개선형 인버트 적용성을 확인하기 위하여 인버트가 설치된 개선형 맨홀에서 산정된 손실계수를 기초로 모든 유입유량 조건에서 적용이 가능한 손실계수 범위도를 작도하였다. 손실계수 범위도는 통계분석에 활용되어 개선형 맨홀의 유입유량 조건에 따른 손실계수 산정식을 도출하는 기초자료로 활용되었다. 이와 같이 도출된 산정식을 적용하면 실제 도심지에 개선형 맨홀을 적용하였을 경우에도 정확한 침수 해석이나 관거 배수능력 평가가 가능할 것으로 판단된다.

  • PDF

간선저류지 설치로 인한 도시지역의 저류효과 분석 (A Study on Retention Effect of Urban Areas by Installation of Trunk Detention Pond)

  • 이성호;이재준;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.463-463
    • /
    • 2015
  • 최근 들어 빈번히 발생하는 이상기후에 의한 국지성 집중호우로 내수배제 불량에 따른 도시지역의 내수침수 피해가 잇따르고 있으며, 이로 인한 대책으로 도시지역의 노후화된 우수관거 교체 및 저류시설의 설치 계획이 이루어지고 있다. 그러나 국내 대도시의 경우 저류시설 설치를 위한 부지 확보가 어렵고 우수관거 교체를 위한 예산확보가 어려운 실정이므로 도시지역에서의 홍수피해를 저감하기 위한 우수관거 및 저류시설의 합리적이고 효율적인 설계 기준이 필요하다. 따라서 도심지의 치수능력 향상과 예산 절감을 시킬 수 있는 기존의 우수관거를 연계한 저류지 설계가 필요하다고 판단된다. 따라서 본 연구에서는 기존 우수관거를 연계한 저류지인 간선저류지(가칭)를 설치한 것을 가정하여 연구를 진행하였다. 간선저류지란 도시에 설계빈도 이상의 강우 발생으로 관거의 허용용량을 초과하는 유량에 대해 기존 관거와 연결된 지하저류지에 임시로 저류시켜 내수침수를 방지하기 위한 구조물로 간선저류지에서 저류된 우수는 흐름이 원활한 하류의 맨홀이나 수위가 안정적인 하천으로 자연방류시킨다. 또한 간선저류지는 관거의 허용용량을 초과하는 구간에서 초과용량에 맞게 소규모로 설계되며 기존의 지하구조물에 간섭이 없도록 설계하여 설치하는게 기본 개념이다. 본 연구에서는 최근 내수침수피해가 발생한 강남역을 대상유역으로 선정하여 유출분석을 진행하고 집중호우시 유역내 기존 우수관거의 통수능 검토 및 침수피해 지역을 검토하였다. 또한 관거의 과부하가 심한 구간을 중심으로 저류지의 용량 및 개수 등을 고려한 분석을 통하여 간선저류지 설치로 인한 관거의 여유용량 및 간선저류지의 저류효과를 검토하였다.

  • PDF

수치모형을 이용한 과부하 $90^{\circ}$ 접합맨홀에서의 손실계수 산정 (An Estimation of Head Loss Coefficients at Surcharged Manhole with 90 Degree Bend Using Numerical Model)

  • 김정수;임가희;한정석;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.165-165
    • /
    • 2011
  • 현재 계획 또는 설계 단계에서 수행되고 있는 관거 시설의 수리계산에는 연결관 내에서의 마찰손실만을 감안하여 수행하고 있으며, 맨홀에서의 에너지 손실은 고려되지 않는 실정이다. 그러나 연결관 내부와 맨홀의 내부는 여러 가지 수리학적 조건이 다르므로 에너지 손실이 발생하게 된다(최원석과 송호면, 2002). 더욱이 직선으로 연결된 중간맨홀보다 유입관과 유출관이 $90^{\circ}$의 각도로 접합된 합류맨홀은 연결 구조상 유수교란에 의한 에너지 손실이 커질 것으로 예상됨에도 불구하고 현재 실무에서 우수 배수시설의 설계 시 직선 연결맨홀과 $90^{\circ}$ 접합맨홀의 손실을 구별하지 않고 사용하고 있는 실정이다. 그러므로 $90^{\circ}$ 접합맨홀에서 우수관거 시스템의 우수 배제 능력을 증가시켜 도심지의 침수를 방지하기 위한 관거시설의 적정 설계 기준이 필요하며, 합리적인 설계 기준을 제시하기 위하여 $90^{\circ}$ 접합맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 수리모형 실험의 물질적 및 시간적 한계를 극복하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 6.3 모형을 이용하여 과부하 $90^{\circ}$ 접합맨홀에서의 흐름특성을 수치모의 하였으며, 맨홀 내 손실수두의 변화를 계산하여 손실계수를 산정하였다. 맨홀 및 접합 관거의 기하 모형의 격자망은 수치해석의 안정성 확보를 위하여 그림 1과 같이 6면체 격자로 구성하였다. 또한 $90^{\circ}$ 접합맨홀에서 급격한 와류에 의해 발생하는 에너지 손실을 저감하기 위하여 $90^{\circ}$ 접합맨홀의 내부 형상 및 접합 조건을 변화시켜 손실계수를 산정하였다. 수치모형의 적용 결과 맨홀 내에서의 유속변화, 수심변화 및 압력변화에 대해서는 수리모형 실험 결과와 유사한 경향을 나타내고 있으며, 수치모형에 의하여 산정된 $90^{\circ}$ 접합맨홀에서 에서의 손실계수 값과 수리모형에 의하여 산정된 손실계수 값이 거의 유사하게 나타났다.

  • PDF

과부하 원형맨홀에서의 손실계수 산정을 위한 실험적 연구 (An Experimental Study for Estimation of Head Loss Coefficients at Surcharged Circular Manhole)

  • 김정수;송주일;장석진;윤세의
    • 한국수자원학회논문집
    • /
    • 제41권3호
    • /
    • pp.305-314
    • /
    • 2008
  • 도시 우수 배수 시스템에서 우수 관거는 개수로 흐름 상태로 가정하여 설계되었기 때문에 맨홀에서의 에너지 손실은 일반적으로 중요하게 고려되지 않았다. 그러나 과부하흐름에서 에너지 손실은 관거의 배수능력을 저하시켜 도심지역의 침수피해를 가중시키는 요인이 된다. 그러므로 과부하 맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 맨홀에 대한 문헌조사 및 현장조사를 실시하여 실험장치 제작과 실험조건을 선정하였다. 선정된 실험조건인 인버트 형상 조건(CASE A, B, C), 단차 조건(CASE I, II, III) 및 실험 유량($1.0\;{\sim}\;5.6\;{\ell}/sec$)을 변화시키면서 실험을 실시하였다. 맨홀 직경($D_m$)과 유입관경($D_{in}$)의 비($D_m/D_{in}$)가 증가할수록 손실계수가 증가하였으며, 맨홀 수심($h_m$)과 유입관거 직경($D_{in}$)의 비($h_m/D_{in}$)가 $1.0{\sim}1.5$일 때 손실계수가 가장 크게 산정되었다. 또한, CASE A, B, C의 평균 손실계수는 각각 0.45, 0.37, 0.3으로 산정되었다. 맨홀에 U자형 인버트를 설치하면, 원형 맨홀에서 에너지 손실을 저감시킬 수 있다. 또한 산정된 맨홀에서의 손실계수는 과부하흐름을 고려한 우수 관거 설계에 활용될 수 있다고 판단된다.

수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정 (Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model)

  • 김정수;임가희;임창수;윤세의
    • 한국방재학회 논문집
    • /
    • 제11권3호
    • /
    • pp.143-150
    • /
    • 2011
  • 도시 우수 배수 시스템에서 우수 관거는 개수로 흐름 상태로 가정하여 설계되었기 때문에 맨홀에서의 에너지 손실은 일반적으로 중요하게 고려되지 않았다. 그러나 과부하흐름에서 에너지 손실은 관거의 배수능력을 저하시켜 도심지역의 침수피해를 가중시키는 요인이 된다. 그러므로 과부하 사각형 맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 FLUENT 6.3 모형을 이용하여 과부하 사각형 합류맨홀에서의 흐름특성을 모의하고 맨홀 내 손실수두의 변화를 계산하여 손실계수를 산정하였다. 또한 실험결과와 수치모의 결과를 비교 및 분석하여 사각형 맨홀에서의 손실계수 산정에 FLUENT 6.3모형의 적용성을 확인하였다. 맨홀 폭(B)과 연결관경(d)의 비(B/d)에 따른 손실계수를 산정하였다. B/d가 증가할수록 사각형 합류 맨홀에서의 손실계수는 증가하였다. 중간 단차 맨홀에서 단차 변화에 따른 손실계수의 변화를 산정하였다. 단차가 5 cm이상 증가하면 맨홀 내 수심과 손실계수가 점진적으로 증가하였으므로 중간 맨홀에서의 적정 단차는 5 cm로 판단된다. 따라서 우수 관거 시스템의 여러 형태의 사각형 맨홀에서의 흐름의 변화 및 손실계수를 예측할 때, Fluent 6.3 모형은 사용 가능하리라 판단된다.

과부하 맨홀에서의 인버트 설치를 고려한 침수면적 변화 (Variation of Inundation Area Considering of Inverts at Surcharged Manhole)

  • 김채린;김정수;임창수;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.220-220
    • /
    • 2017
  • 일반적으로 XP-SWMM 모형을 이용한 침수모의를 실시할 경우 과부하 맨홀에 손실계수의 적용 시와 미적용 시에 침수 범위의 차이가 상이함에도 불구하고 보다 실제적인 침수면적의 모의를 위하여 에너지 손실 적용에 대한 도시침수해석의 구체적인 연구가 미흡한 실정이다. 또한 과부하관거에서의 배수능력을 증대하기 위하여 설치되는 맨홀 내 인버트의 침수저감 효과에 대한 분석이 필요한 실정이다. 이원 등(2015)은 군자배수구역을 대상으로 손실계수의 적용 방안 및 손실계수 적용에 따른 침수면적의 변화를 분석하였으나, 맨홀의 형상 및 인버트의 설치유무에 대한 사항을 고려하지 않았다. 그러므로 기 산정된 과부하 맨홀에서의 손실계수를 적용 및 인버트 설치에 따른 침수범위 변화의 분석이 필요할 것으로 판단된다. 본 연구에서는 손실계수 및 인버트 설치 여부에 따른 침수범위의 변화를 분석하기 위하여 도림천의 도림1배수분구를 대상으로 XP-SWMM을 활용하여 침수해석을 실시하였다. 김정수(2010)가 수리모형실험을 통하여 인버트를 설치하지 않은 기본형 맨홀에서 산정된 손실계수 0.61과 반원형, U자형 인버트를 각각 설치했을 시에 0.37, 0.30으로 산정된 손실계수를 XP-SWMM모형의 각 과부하 맨홀에 적용하였다. 침수모의 결과 과부하 맨홀에 손실계수를 적용하지 않은 경우의 침수면적은 21.14 ha로 모의되어 실제 침수면적과 약 60 % 정도의 일치율을 보였으나, 인버트를 설치하지 않은 기본형 맨홀의 손실계수를 적용한 경우의 침수면적은 37.12 ha로 모의되어 실제 침수면적인 35.65 ha와 거의 유사하게 나타났다. 또한 반원형 인버트를 고려한 경우의 침수면적은 28.04 ha, U자형 인버트 설치를 고려한 경우의 침수면적은 25.90 ha로 모의되었다. 인버트를 미적용한 경우의 침수면적과 비교하면 침수면적이 각각 24 %, 30 % 감소하였다. 따라서 도시 침수피해를 저감하기 위해 과부하 맨홀에 인버트를 설치한다면 맨홀내의 에너지 손실이 저감되고 배수능력이 향상되어 침수피해 면적과 침수심을 감소시킬 수 있을 것으로 판단된다.

  • PDF