• Title/Summary/Keyword: 공탄성 해석

Search Result 1,219, Processing Time 0.027 seconds

Evaluation of Shallow Foundation Behavior on Basalt Rock Layers With Clinker and Sediment Layers Reinforced Using Cement Grouting (현무암층 사이에 존재하는 클링커층과 퇴적층의 시멘트 그라우팅 보강에 따른 얕은 기초 거동 평가)

  • Lee, Kicheol;Shin, Hyunkang;Jung, Hyuksang;Kim, Donghoon;Ryu, Yongsun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2019
  • Clinker layer is a stratum structure distributed in volcanic area such as Jeju Island. The clinker layers were formed in between the repetitive action of eruption and solidification of lava flows. Since the clinker layer contains a large amount of voids accompanied by the lava gas ejection process, there is a possibility of inducing overall stability of the ground due to the low stiffness and strength of the clinker layer. Therefore, in this study, site investigation was carried out at both ends of the 00 bridge where the clinker layers exist. And, based on the ground survey results, the behavior of shallow foundations was analyzed numerically. In addition, the improved shallow foundation behavior in grouting substitution using the chemical injection method of the clinker layer was compared with the shallow foundation behavior in the ground, and the grouting substitution efficiency of each layer was analyzed. As a result, the bearing capacity, the replacement efficiency and elastic settlement were different according to the presence or absence of the sediment layer. This is because the sediment layer has a lower stiffness and density than the clinker layer.

Analysis of Scaling Factor applied to Lab-Scale Model for Estimating Dynamic Characteristics of Real Structures (실구조물의 동특성 파악을 위한 축소모형에 적용되는 상사비 분석)

  • Park, Gun;Yoon, Hyungchul;Kim, Sung Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • The earthquakes are the natural disasters that can cause the most serious damage to civil structures. Therefore, various studies are being conducted to secure the safety of structures against earthquakes. Most studies on the safety or mechanism of civil structures during earthquakes are being conducted based on lab scale test, because real structure tests are impossible when considering the scale of civil structures. The scaling factor proposed by Iai is mainly cited, but when applying the scaling factor proposed by Iai, there are many difficulties in selecting the structural members necessary for the production of the lab scale model. This is because when applying the scaling factor proposed by Iai, the scaling factor must be applied to the elastic modulus, which is the material property of the structure. Therefore, a new method based on Iai's 's similarity law for determining scale factor is applied in this study where the material property of real structure is same as that of lab-scale model. Through the results of this study, it is considered that the characteristics of the structure calculated through the lab scale model test can more accurately reflect the characteristics of the real structure.

Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame (보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발)

  • Do Yeon Kim;Hyuck Soon Choi;Joohyung Kang;Yongsun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.70-78
    • /
    • 2023
  • The ordinary concentrically braced frame has an advantage of having simple design procedure. For this reason, it has been widely used for the small-sized frame structures subject to moderate or lower magnitude earthquake, even though its seismic performance against the earthquake load is not much effective compared to that of other frame systems. To enhance seismic performance of the ordinary concentrically braced frame where the bracing has a weakness for compressive behavior under lateral earthquake, seismic retrofitting by viscous damper has been commonly introduced. However, the viscous damper, itself, generally does not have stiffness for restoring the structure to the original position. This may cause residual displacement to the structure. In this paper, a self-centering viscous damper system in which upper and lower beams having flexural rigidity play a role as a nonlinear-elastic spring, restoring the spring-damper system subject to external displacement history to its original location, is developed. The numerical analysis for a simplified frame structure shows how including the developed self-centering viscous damper system leads to an enhanced seismic performance of the frame structure through energy dissipation during earthquake excitation.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.447-456
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mass. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributions. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks did not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the K$_1$ value increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.

  • PDF

Analysis on the Shear Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석)

  • Ha, Soo-Kyoung;Son, Guk-Won;Yu, Sung-Yong;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.18-28
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

An Alternative Perspective to Resolve Modelling Uncertainty in Reliability Analysis for D/t Limitation Models of CFST (CFST의 D/t 제한모델들에 대한 신뢰성해석에서 모델링불확실성을 해결하는 선택적 방법)

  • Han, Taek Hee;Kim, Jung Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.409-415
    • /
    • 2015
  • For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.

A Study on the Intensity and Energy Attenuation of the 13 December 1996 Yeongweol Earthquake, Korea (1996년 12월 13일 영월 지진의 진도 및 에너지감쇠에 관한 연구)

  • 조봉곤;김성균;김우한;김준경;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.69-77
    • /
    • 1997
  • An intensity survey on the 13 December 1996 Yeogweol earthquake has mode for 262 locations throughout southern part of Korean peninsula, then we investigated attenuation properties in the south Korean region as well as intensities distribution. In this study, intensities are estimated to be from II to possibly VIII. The iso-seismal intensity map we obtained shows general pattern of intensity distribution in the south korean region quite clearly despite the inherent uncertainties included in the process of intensity estimation. In case of intensity larger than VI, considerable damages such as fracturing walls are frequently reported. One of the significant feature of this intensity map is, considering its magnitude 4.5 reported by KMA, the felt area is unusually large covering most of the Korean Peninsular except Cheju island. This result indicates either the magnitude is under estimated or the focal depth is much deeper than expected. Assuming indicates either the magnitude is under estimated or the focal depth is much deeper than expected. Assuming shallow earthquake whose focal depth is by iso-seismal contour lines for intensity IV to VII, respectively. To resolve this ambiguity, more reliable estimation of focal depth and magnitude by using telesesmic instrumental records should be made in the future.

  • PDF

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.