• Title/Summary/Keyword: 공차

Search Result 396, Processing Time 0.027 seconds

Study on tolerance and reliability analysis of mechanical systems with uncertainty (불확정성을 고려한 기계 시스템의 공차해석 및 신뢰도 해석에 관한 연구)

  • Choe, Jin-Ho;Lee, Se-Jeong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.215-226
    • /
    • 1998
  • This paper addresses an analytical approach to tolerance and reliability analysis of mechanical systems with uncertainty. Many mechanical systems consist of links and lubricated joints. The mobility method is applied to consider lubrication effects and the clearance vector model is used to stochastically define a mechanism for tolerance and reliability analysis. To show the validity of the proposed method, a four-bar path generator and a slider-crank mechanism are considered. The results obtained by applying the proposed method are compared with those by Monte-Carlo simulation.

Influence of Manufacturing Tolerance on the Aerodynamic Characteristics of Axial Compressor Blades - 1. Distortion of Blade Profile Curvatures (축류 압축기 날개의 제작 공차가 공력 특성에 미치는 영향- 1. 날개 형상 곡률 변형)

  • Sohn, Jeong L.;Kang, Dong Jin;Jun, Hyun Joo;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.30-36
    • /
    • 1999
  • Blade shape profile in the axial compressor is one of the most important factors governing its aerodynamic characteristics. Manufacturing tolerance, which is inevitable in the blade manufacturing processes, may change blade profile and as a consequence, it will affect the compressor performance. In this paper, influence of manufacturing tolerance on the aerodynamic characteristics of axial compressor blades with distortion of blade profile curvatures is investigated by using a flow simulation technique. It is found that manufacturing tolerance can be an important factor affecting the source of both profile and wake losses of the axial compressor blades.

  • PDF

Prediction of Dynamic Characteristics of Rubber Mount far Anti-Vibration Considering the Dimensional Tolerance (치수공차가 고려된 방진마운트의 동특성 예측)

  • 김국원;김남웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.829-832
    • /
    • 2002
  • With the increase of storage density, high rotational speed and high access technologies in optical disk drive, mechanical issues, mainly noise and vibration, become critical. Up to now the researches of rubber mount for anti-vibration focused on how to calculate the static and the dynamic stiffness of rubber mount and leaved out of consideration of the dimensional tolerance of rubber mount for anti-vibration. This paper presents the effects of dimensional tolerance of rubber mount for anti-vibration on the dynamic characteristics of optical disk drive by finite element analysis and dynamic test. The relation between dimensional tolerance and dynamic characteristics of optical disk drive is observed and discussed.

  • PDF

Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State (다물체계의 평형위치에서 고유진동수에 대한 공차해석)

  • Eom, Seung-Man;Choi, Dong-Hwan;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.95-100
    • /
    • 2006
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the numerical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

  • PDF

Analytical Method to Analyze the Tolerance Effect on the Vehicle Ride Comfort (차량 승차감에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Beom-Seok;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.549-555
    • /
    • 2008
  • Analytical method to analyze the tolerance effect on the vehicle ride comfort is suggested in this paper. Ride comfort is one of the most important performance indices which decide the vehicle design quality. In general, the ride comfort is affected by the variations of parameters of a vehicle model. Therefore, the effects of the parameters on the ride comfort need to be evaluated statistically based on the whole-body vibration of the vehicle. In this paper, weighted RMS values of the acceleration PSD of a seat position are used to define the ride comfort. The equations of motion and the sensitivity equations are derived based on a 5-DOF vehicle model. By employing the sensitivity information of the acceleration at the seat position, the tolerance effect on the vehicle ride comfort could be effectively analyzed.

The study of logistics optimization model with empty transfer rate of reverse logistics (역물류의 공차율을 고려한 물류 최적화 모델 연구)

  • Yu Byeong-U;Park Jae-Hyeon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.04a
    • /
    • pp.115-121
    • /
    • 2006
  • SCM 경쟁력 재고는 기업 내의 부문별 또는 개별기업 내부의 한정된 개선 노력이 외부의 부문 또는 기업에서의 활동과 연계되어 전체의 최적화가 되지 않으면 그 성과가 극히 제한적일 수 밖에 없다. 따라서 히든 코스트(hidden cost)의 발견 및 유통물류의 최적화에 박차를 가하는 것이 현실이다. 본 연구는 순 물류로 진행한 유통 경로 상에서 만약 역 물류가 발생할 경우 순물류 비용이외 공차(empty driving)로 인한 역물류의 히든 코스트를 최소화하는 모형을 통해 물류이익을 최대화 할 수 있는 방안을 찾기 위해 노력하며 결국 순물류와 역물류상의 유통상의 비용과 이익의 쌍대성에 기초하여 Pull, Push 시스템을 이용한 최적 시스템 모델화를 수행하여 효율적인 물류비용 산정의 방법을 모색한다.

  • PDF

Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium (동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.579-586
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. Sensitivity equations for damped natural frequencies and the transfer function are derived at the dynamic equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated.