• Title/Summary/Keyword: 공진 회피설계

Search Result 30, Processing Time 0.042 seconds

Research of Vibration Analysis and Resonance Avoidance Design of Composite Quadcopter (복합재 쿼드콥터의 진동 특성 분석과 공진 회피에 대한 연구)

  • Kim, Sang-Ryul;Kim, Wie-Dae
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.133-139
    • /
    • 2020
  • In this research, the vibration characteristics of composite quadcopter are analyzed, and avoidance design and analysis are performed to avoid resonance. The full platform of a commercial quadcopter with composite rotor arm is analyzed to see the vibration characteristics using FEM program. The manufactured stacking sequences of rotor arm is used for analysis, and the natural frequencies are compared with experimental results and simple analytic model results. It is also confirmed that the natural frequency of the particular mode is included within the operation range of the motor. The resonance avoidance design is carried out by selecting three variables from the existing model: stacking sequence, rotor-arm pipe length, and pipe thickness.

A Study on the Structural Reinforcement for the Reduction of Transverse Vibration by Ship's Main Engine (선박 주기관에 의한 횡진동 저감을 위한 구조보강 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun;Im, Hong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.279-285
    • /
    • 2019
  • Transverse vibrations of a ship's aft end and deckhouse are mainly induced by transverse exciting forces from the main engine. Resonance should be avoided in the initial design stages when there is a prediction of resonance between the main engine and transverse modes of the deckhouse. Estimates of frequencies for resonance avoidance are possible from the specifications of the main engine and propeller, but the inherent vibration frequency of the structure around the engine room is not easy to estimate due to the variation in the shape. Experience-oriented vibration design is also carried out, which results in many problems, such as process delay, over-injection of on-site personnel, and iterative performance of the design. For the flexible design of 8,600 TEU container vessels, this study addressed the resonance problem caused by the transverse vibration of the main engine when only the main engine was changed from 12 cylinders to 10 cylinders without modification of the hull structure layout. Efficient structural reinforcement design guidelines are presented for avoiding resonances with the main engine lateral vibration and the structure around the engine room. The guidelines are expected to be used as practical design guidelines at design sites.

Development of Vibration Analysis Program for Anti-resonance Design of Vertical-axis Tidal Current Turbine (조류발전용 수직축 터빈의 공진 회피 설계를 위한 프로그램 개발)

  • Bae, Jae-Han;Seong, Hye-Min;Cho, Dae-Seung;Kim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.336-341
    • /
    • 2012
  • The vertical-axis tidal current turbine (VAT) consisting of blades, struts to support blades, shaft, generator and so forth requires anti-resonance design against fluid fluctuation forces generated on blades to ensure its stable operation. In this study, a free vibration analysis program based on the finite element method is developed for efficient anti-resonance design of VAT in the preliminary design stage. In the finite element modeling, the VAT structure components are regarded as beam elements. Added masses due to the fluid and structure interaction of VAT evaluated by empirical formulas are considered as lumped mass elements. In addition, input parameters required for the analysis can be automatically prepared from the principal dimensions of VAT to make anti-resonance design more convenient. The validity of applied methods is verified by the comparison of the numerical results obtained from MSC/Nastran and the developed program for two VAT models.

  • PDF

Flow Analysis for Performance Characteristics with Closed Type Impeller Shapes of a Centrifugal Compressor (원심압축기 밀폐형 임펠러 형상에 따른 성능특성 파악을 위한 유동해석)

  • Cho, Jongjae;Yoon, YongSang;Cho, MyungHwan;Kang, SukChul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.

Vibration Analyses and Design of Resonance Avoidance of the Unmanned Helicopter Master (무인 헬리콥터 마스터의 진동해석 및 공진회피 설계)

  • Lee, Seong-Chul;Son, In-Soo;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.951-958
    • /
    • 2011
  • In this paper, the purpose is to investigate the vibration characteristics and the design of resonance avoidance of the unmanned helicopter master. Based on the Euler-Bernoulli beam theory for helicopter master, the equation of motion is derived by using extended Hamilton's principle. It was studied about the natural frequency of helicopter master as the design variances(tip mass, length and diameter of master). Also, it was compared the theoretical results for natural frequency with the results of FE analysis. The results of this study showed the vibration characteristics of helicopter master for the design of resonance avoidance.

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Design to Reduce Structure-borne Noise in Outdoor Unit of Air Conditioner Using Structural Optimization with Frequency Constraints (고유진동수 제약식을 갖는 구조 최적화를 통한 에어컨 실외기의 구조기인소음 저감 설계)

  • 최상현;박남규;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • 대부분의 제품 생산 시에는 시제품을 제작하여 이에 대한 성능 심사를 통해 미비한 부분을 보완하기 위한 재설계 작업과정을 필요로 한다. 설계 작업에 가장 중요한 부분인 특정 설계 변수에 대한 민감도의 파악은 설계 작업의 핵심적인 역할을 하고 있다. 대개의 경우 진동설계를 위한 설계변수로 구조물의 단위면적, 길이, 재료의 성질과 같은 물리적인 변수를 많이 활용하고 있으며 이러한 변수들에 대한 민감도 해석 기법들은 이미 많은 연구를 통해 실용화되고 있다. 그러나 이러한 변수만으로는 주어진 조건을 만족하도록 설계하기가 어려운 경우가 있다. 이런 경우는 부가구조물을 첨가하여 저진동 설계조건을 만족하는 구조물을 제작하는 것이 보편적이다. 한편, 구조물의 최적화 과정에서 고유진동수를 고려해야 하는 경우가 많다. 저주파 영역의 문제에서는 첫번째 고유진동수가 구조물의 진동량에 관계되는 중요한 요인이 되고, 또한 공진에 의한 문제가 발생했을 경우에는 고유진동수를 옮겨서 공진을 회피할 수 있기 때문이다. 본 연구에서는 에어컨 실외기의 진동을 저감하고 그로 인한 구조기인 소음을 저감하기 위하여 음압 레벨을 바탕으로 정한 관심 주파수 영역에 고유진동수가 존재하지 않도록 부가구조물을 최적화하였다. 최적화에 필요한 민감도는 신뢰성 있는 유한요소 모델을 구성하는 것이 쉽지 않으므로 실험으로 구한 주파수 응답함수를 이용하였다.

  • PDF