• Title/Summary/Keyword: 공진주기

Search Result 182, Processing Time 0.03 seconds

Frequency stabilization of high power diode laser using Fabry-Perot etalon for interferometry (패브리 페로 공진기를 이용한 간섭계용 고출력 다이오드 레이저의 주파수 안정화)

  • 주기남;김승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.92-93
    • /
    • 2003
  • 간섭계의 광원으로 현재 레이저를 주로 사용하고 있다. 이러한 간섭계용 레이저의 조건은 선폭(linewidth) 이 좁아야 하고, 중심 주파수가 안정화 되어야 한다. 특히 거리용 간섭계의 경우, 주파수 안정화되어 있는 레이저가 사용되어 측정 불확도를 낮춘다. 그러나 점차 다축을 측정하기 위한, 또는 보다 넓은 영역을 측정하기 위해서는 보다 높은 출력의 레이저를 요하고 있다. 그러나 현재의 간섭계용 레이저는 헬륨네온 레이저로서 단일 모드 기준으로 2 mW 이하의 출력을 보이고 있어서 응용 면에 있어서 제약을 받는다. (중략)

  • PDF

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF

Transient Surge Motion of A Turret Moored Body in Random Waves (불규칙파 중에 Turret 계류된 부유체의 천이운동해석)

  • 김동준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1991
  • A moored body in the sea is subjected to second-order wave forces as well as to linear oscillatory ones. The second-order farces contain slowly-varying components, of which the characteristic frequency can be as low as the natural frequency of horizontal motions of the moored body. As a consequence, the slowly-varying force can excite unexpectedly large horizontal excursion of the body, which may cause a serious damage on the mooring system. In design analysis of Turret-type mooring system which is one of the interesting mooring systems for a floating body. the slowly-varying drift forces and the transient motion of the system during weathervaning are very important. In this paper the slowly-varying drift forces were calculated by using the Quadratic Transfer Function with considering the second order free-wave contributions. Additionaly the transient surge motion of the moored body was simulated with including the roll of the time-memory effect. In this simulation the spring constant of the spread Turret mooring system is updated at every time step for considering the nonlinear effect.

  • PDF

Long Wave Investigation at the Shelf and in the Bays of South Kuril Islands (남부 Kuril 열도의 육붕과 만에서의 장파분석)

  • Djumagaliev, V.A.;Rabinovich, A.B.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.318-328
    • /
    • 1993
  • A series of long wave measurements was made in the region of Shikotan Island (the South Kuril Islands) during 1990-1992: 7 bottom pressure stations were installed in 5 bays and inlets of Shikotan and 3 precise microbarographs were situated at the shore. The observations were taken in order to monitor tsunami waves, estimate resonance features of coastal topography, and investigate seiche generation mechanism. It was found that forced long waves dominate in the motions with periods exceeding 2 hours, freely propagating long waves prevail at periods of 30-120 min and eigen-oscillations of bays (seiches) are the predominant type of long waves at periods less than 30 min. The Helmholtz mode with period 30 min in Krabovaya Bay and 18.5 min in Malokurilskaya Bay is the most important type of wave motion in the inner Shikotan basins. There is a good correlation between passages of atmospheric disturbances and generation of seiches near the coast of Shikotan Island. In particular, jumps in atmospheric pressure excite seiches in different bays simultaneously, in each one with the corresponding dominant period. The atmospheric spectra were remarkably smooth and stable, and could be described by a $\omega$$^{-2}$26/ power law.

  • PDF

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.

Shape Oscillation and Mode Characteristic of Droplet on Vibrating Flat Surface (진동 평판 위 액적의 형상 진동 변화 및 모드 특성)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.489-494
    • /
    • 2013
  • This study aims to understand the mode characteristics of a droplet under a periodic forced vibration. To predict the resonance frequency of a droplet, theoretical and experimental approaches were employed. A high-speed camera was used to capture the various deformation characteristics of a droplet-mode shape, detachment, separated secondary droplet, and skewed deformation. The comparison between the theoretical and the experimental approaches shows a ~10% discrepancy in the prediction of the resonance frequency, which appears to be caused by the effect of contact line friction, nonlinear wall adhesion, and experimental uncertainty. Owing to contact-line pinning and smaller amplitude, the droplet shape becomes symmetric and the size of each lobe at the resonance frequency exceeds that at the neighbor, which is out of resonance.

Elastic Behavior of Contact Lense(I) : Effect of Vibration (콘택트 렌즈의 탄성에 관한 연구(I) : 진동에 의한 영향)

  • Kim, Dase-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.1-16
    • /
    • 1999
  • Differential equations and its numerical solution program using Turbo-C were formulated to describe the radical distribution and average displacement amplitude of vibrating dehydrated contact lens(HEMA) driven by sinusoidal or rectangular pressure. The natural resonant frequency of the lens diaphram(thickness 0.08mm, diameter 14mm, curvature radius 8mm) was measured to be 5730 Hz from the extrapolation of frequency vs addedmass to the diaphram curve. The Young's modulus of the lens was measured to be $4{\times}10^9$ Pa with altering the original shape. The effect of parameters such as thickness, effective radius, damping coeff., amplitude of driving pressure on the vibration characteristics was illustrated by the computer simulation of the derived program. When the frequency of driving pressure coincides with the integral multiple of fundamental resonance frequency of the lens the wave pattern changes from arc to bell-shape along the radial position of the diaphram. If this happens to the contact lens on the cornea in vivo, it might create the feel of pull of the lens due to the increased rise of central part of the lens.

  • PDF

A Dual-Band Asymmetrical Metamaterial Antenna for Orthogonal Radiation Patterns (수직한 방사패턴을 형성하는 이중대역 비대칭 배열 메타물질 안테나)

  • Pyo, Seong-Min;Han, Sang-Min;Lee, Dong-Hyo;Kim, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2246-2252
    • /
    • 2009
  • A new metamaterial antenna with dual resonant modes is presented using an asymmetrical periodic arrangement for orthogonal radiation patterns. The proposed antenna produces two orthogonal modes by the asymmetrical periodic unit-cell arrangement. The orthogonal resonant mode provides perpendicular radiation patterns without changing the antenna polarization at each resonant mode. The fabricated antenna shows good agreements with the theoretical analysis of the electric-field. The experimental results shows the orthogonal radiation patterns along x- and y-axises, and gains are 3.34 and 3.86 dBi at each radiating resonant mode, respectively. Additionally, slotted ground structures are embedded on the back side of the antenna in order to reduce the size and enhance the radiation efficiency of 12 % and 27 %, respectively.

Implementation of Distributed Feedback Filters using Cascaded Gratings with Different Period (주기가 다른 격자들로 구성된 DFB 필터의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The filtering characteristics of planar distributed feedback (DFB) waveguides composed by gratings with different period are solved using equivalent transmission-line network. To analyze explicitly its band-pass and resonance properties, a longitudinal modal transmission-line theory (L-MTLT) based on Floquet's theorem and Babinet's principle is newly developed. The numerical results reveal that this approach offers a simple and analytic algorithm to analyze the filtering characteristics of cascaded DFB structure with different period, and the bandwidth and side-lobe suppression of cascaded DFB filter are sensitively dependent on the variation of aspect ratio and the number of grating at each region.

A study on the Structural Stability about the Fan Blade by the Air Excited Forces. (공기 가진력에 의한 팬 블레이드 구조 안정성 평가에 관한 연구)

  • 정규강;김경희;조생현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • In a gas-turbine engine, fan blades in flow path are confronted with many kinds of loading. The study of the excited force by the wake of struts has proposed and the possibility of fatigue failure about rotating fan blades by the excited force at the steady state is evaluated. Equations of the excited force of wakes has been derived at the steady state and the maximum pressure distributions measured at the transient state are proposed. Dynamic characteristics and the fatigue strength of fan blades by experimental test were obtained. To evaluate HCF(High Cycle Fatigue) damage of fan blades, FEM analysis was performed with a steady state harmonic response, which was followed by high cycle fatigue damage factor from goodman diagram.

  • PDF