• Title/Summary/Keyword: 공중발사

Search Result 42, Processing Time 0.023 seconds

NUMERICAL INVESTIGATION ON THE SAFE SUPERSONIC AIR-LAUNCHING ROCKET SEPARATION FROM THE MOTHER PLANE (안전한 초음속 공중발사를 위한 삼차원 로켓 주위의 모선분리 유동 해석)

  • Ji Y.M.;Lee J.W.;Park J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-259
    • /
    • 2005
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket from the mother plane. Three-dimensional Euler and Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from two cases of mother plane configuration: one is an idealized ogive-cylinder body and the other is a real F-4E Phantom. The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Optimal Mission Design of the Supersonic Air-launching Rocket (초음속 공중발사로켓의 임무형상 최적설계)

  • Choi, Youngchang;Lee, Jaewoo;Byun, Yunghwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • Design and optimization study has been performed to obtain a supersonic air.launching mission for the nanosat launcher. Given mission is to launch 10kg payload to target orbit of $700km{\times}700km$. Additional design constraints are imposed by the mother plane. After the required velocity is obtained, the stag ing optimization is carried out. Serial analyses for the propulsion system and aerodynamics are performed then, the rocket trajectory optimization has been carried out. After several mission design and optimization iterations, the optimized mission which satisfies the mission target is obtained. Total weight of the three-staged air-launching rocket is 1231.4kg and the payload weight is 10 kg.

  • PDF

Optimal Design of Hybrid Motor with HTPB/LOX for Air-Launch Vehicle (공중발사체를 위한 HTPB/LOX 하이브리드 모터의 최적설계)

  • Park, Bong-Kyo;Lee, Chang-Jin;Lee, Jae-Woo;Rhee, Ihn-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.53-60
    • /
    • 2004
  • Optimal design of the hybrid motor has been performed for the first stage of nanosat air launch vehicle using F-4E Phantom as mother plane. Selected design variables are number of ports, the initial oxidizer flux, the combustion chamber pressure, and the nozzle expansion ratio. GBM(Gradient Based Method) and GA(Genetic Algorithm) are simultaneously used to compare the versatility of each algorithm for optimal design in this problem. Also, two objective functions of motor weight, and length are treated separatedly in the optimization to study how the objective function can affect the optimal design. The design results show that the optimal design can be successfully achieved either using GBM or GA regardless of the choice of the objective function; motor weight or length. And nanosat air launch vehicle which has total mass of 704.74kg, and length of first stage 3.74m is designed.

A study on licensing of a launch site (인공위성 발사장 관리방안에 대한 연구)

  • Park, Geun-Young;Yoo, Seung-Woo;Jin, Young-Kwon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.163-174
    • /
    • 2003
  • The space center will be constructed by 2005 for launch of KSLV-I at Woinara-Do, Haban Village, Yenae-Ri, Bongrae-Myon, Kohung-Goon, Junlanam Province on the southern coast of the Korean peninsular. This will make Korea be the 13th advanced country in space development having launching site in the world. This paper presents licensing and safety requirements to protect the public from the risks associated with activities at a launch site.

  • PDF

Performance Test of a Jet vane type Thrust Vector Control System (제트 베인형 추력편향장치의 성능시험)

  • 신완순;이정민;이택상;박종호;김윤곤;이방업
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.75-82
    • /
    • 1999
  • Theoretical analysis and performance test of Jet vane type Thrust Vector Control(TVC) were conducted using supersonic cold-flow system. The use of TVC Systems an in particular jet vanes, are currently being researched for use in air launch, ship launch, underwater launch and high altitude maneuvering of tactical missiles and rockets. The necessity to generate control forces to rapidly change the course of the missile is frequently required when traditional, exterior aerodynamic surfaces are unable to produce these forces, when the flow over the control surface is insufficient. This situation can occur at launch, or high angles of attack of the control surfaces. Jet vanes peformed well at all altitudes and environmental conditions, and jet vanes are extremely effective at deflection angles up to as high as $30^{\circ}$, make them ideal for the launch and maneuver applications. In this study, performance test of supersonic cold-flow system and visualization of supersonic jet was conducted, and shape and deflection angle effect of two types of jet vanes are investigated.

  • PDF