• Title/Summary/Keyword: 공정온도

Search Result 4,126, Processing Time 0.034 seconds

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

Effect of Accelerated Storage on the Microstructure and Water Absorption Characteristics of Korean Adzuki Bean (Vigna angularis L.) Cultivar (팥의 가속화 저장에 따른 미세구조 및 수분흡수 특성)

  • Jieun Kwak;Seon-Min Oh;You-Geun Oh;Yu-Chan Choi;Hyun-Jin Park;Suk-Bo Song;Jeong-Heui Lee;Jeom-Sig Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.167-174
    • /
    • 2023
  • This study investigated the microstructure and water absorption characteristics of the Korean adzuki bean (Vigna angularis L.) cultivar under accelerated storage. The germination rate, acid value, redness (a*), and yellowness (b*) values showed no significant differences after three months of storage compared to pre-storage under low temperatures (4℃). However, a statistically significant difference was observed under accelerated high temperatures (45℃). In particular, after storage for three months, the germination rate and acid value were 0% and 33.63 mg KOH/100g, respectively, under accelerated high temperatures. After storage for three months, the holes, hilum damage, and spaces between the seed coat and cotyledon shortened the time and speed of water absorption under accelerated high temperatures compared to that under low temperatures. Conversely, further research is required to investigate the reason for the low rate of parallel water absorption.

Influence of low-pressure tumbling on the quality characteristics of thawed pork (감압 텀블링 해동이 돈육의 품질 특성에 미치는 영향)

  • Won-Ho Hong;Jeong Kim;Yu-Jeong Gwak;Jiyeon Chun
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.88-97
    • /
    • 2023
  • As livestock consumption in Korea has been gradually increasing, the quality of the final products has been improved to meet this increased demand. In particular, maintaining the water holding capacity (WHC) and minimizing the drip loss during the thawing of frozen meat are of utmost importance. This study investigated the physicochemical properties of frozen pork subjected to thawing under different conditions: at room temperature (20℃, under air), at a low temperature (4℃ refrigerator, under air), under water (20℃, under water in a vacuum bag), under microwave (microwave-thawing, 260 W), and under low-pressure tumbling (20℃, 0.015 bar, tumbling). The shortest thawing time for frozen pork was recorded upon low-pressure tumbling thus indicating a fast heat transfer. The lowest drip loss (0.2%) and highest WHC (94.5%) were also recorded under this condition. A significantly higher drip loss was observed upon microwave- (1.0%) and water-thawing (1.2%), which resulted in the lowest WHC in microwave thawing (87.2%). The highest total count of aerobic bacteria and coliform group were observed upon room temp thawing while the low pressure tumbling and thawing resulted in the lowest aerobic bacteria (1.90 log CFU/g) and coliform (0.78 log CFU/g) count. Consequently, thawing by low pressure tumbling afforded the best food quality.

A Study on Heterogeneous Catalysts for Transesterification of Nepalese Jatropha Oil (네팔산 Jatropha 오일의 전이에스테르화 반응용 불균일계 촉매 연구)

  • Youngbin Kim;Seunghee Lee;Minseok Sim;Yehee Kim;Rajendra Joshi;Jong-Ki Jeon
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.

A Study on the Characteristics of Combustion and Manufacturing Process on Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (유기성폐기물 고체연료화를 위한 연소 및 제조과정의 특성연구)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • To investigate the feasibility of refuse derived fuels (RDFs) combined of sewage sludge and combustible wastes such as substitutive fuels instead of a stone coal, several different RDFs made with different mixtures of sewage sludge and combustible wastes were analyzed by various experiments. The combustion characteristics for the RDFs were investigated by analyzing fuel gases, and heating values were also measured by a bomb calorimeter. The fundamental properties such as moisture contents, ratios of combustible materials, amounts of ashes, heavy metals, ratios of each chemical elements and heating values were analyzed in accordance with mixing ratios of wt(%) for researching the characteristics of the RDFs. $RDF_{k-1}$ was made of mixing materials which were dried sewage sludge, food wastes and combustible wastes. $RDF_{k-2}$ was made of mixing materials which were peat-moss, tar and sewage sludge. Combustion experiments were carried out at the optimal conditions which were m=2 under air-fuel condition and $850^{\circ}C$. The retention times in the combustor were set at 5, 10 and 15minutes. 50 g of RDFs was put in the combustor for each experiments. The ranges for heating values of $RDF_{k-1}$ with different mixing ratios were from 6,900 kcal/kg to 8120 kcal/kg. The ranges for heating values of $RDF_{k-2}$ with different mixing ratios were from 4,014 kcal/kg to 8,050 kcal/kg. As a result of this study, the heating values, moisture contents, components of chemical elements and mixing ratios of the materials in RDFs had big effects on the efficiency of the combustion. In $RDF_{k-1}$, the higher amounts of combustible wastes in the mixtures, the higher heating values, concentrations of $C_xH_y$ and amounts of ashes were produced. In $RDF_{k-2}$, the higher tar amounts in the mixtures caused the higher heating values, amounts of ashes, concentrations of CO gas and CxHy.

Comparison of Early Germinating Vigor, Germination Speed and Germination Rate of Varieties in Poa pratensis L., Lolium perenne L. and Festuca arundinacea Schreb. Grown Under Different Growing Conditions (생육환경에 따른 Poa pratensis L., Lolium perenne L. 및 Festuca arundinacea Schreb.의 초종 및 품종별 발아세, 발아속도 및 발아율 비교)

  • 김경남;남상용
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Research was Initiated to investigate germination characteristics of cool-season grasses (CSG). Several turfgrasses were tested in different experiments. Experiments I and III were conducted under a room temperature condition of 16$^{\circ}C$ to 23 $^{\circ}C$ and under a constant light condition at 25 $^{\circ}C$, respectively. An alternative environment condition that is a requirement for a CSG germination test by International Seed Testing Association (ISTA) was applied in the Experiment II, consisting of 8-hr light at 25 $^{\circ}C$ and 16-hr dark at 15 $^{\circ}C$. In each experiment, data such as early germinating vigor, germination speed and germination rate were evaluated. Six turfgrass entries were comprised of two varieties each from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.), respectively. Significant differences were observed in early germinating vigor, germination speed and germination rate. Early germinating vigor as measured by days to 70% seed germination was variable according to environment conditions, turfgrasses and varieties. It was less than 6 days in PR and 6 to 9 days in TF. However, KB resulted in 11 to 13 days under an alternative condition and 11 to 28 days under a room temperature condition. The germination speed was fastest in PR of 7 to 10 days and slowest in KB of 14 to 21 days. However, intermediate speed of 10 to 14 days was associated with TF. There were considerable variations in germination rate among turfgrasses according to different conditions. Generally, PR and TF germinated well, regardless of environment conditions. However, a great difference was observed among KB varieties, when compared with others. Under a room temperature condition, total germination rate was 71.0% in Midnight and 77.7% in Award. And it increased under an alternative condition, which was 81.7% and 91.7% in Award and Midnight, respectively. However, the poorest rate was found under a constant temperature condition, resulting in 18.0% in Award and 15.3% in Midnight. These results suggest that an intensive germination test required by ISTA be needed prior to the decision of seeding rate, including early germinating vigor and germination speed as well as total germination rate. KB is very sensitive to environment conditions and thus its variety selection should be based on a careful expertise.