• Title/Summary/Keyword: 공원계획

Search Result 533, Processing Time 0.018 seconds

A Study on Spatial Changes around Jangseogak(Former Yi Royal-Family Museum) in Changgyeonggung during the Japanese colonial period (일제강점기 창경궁 장서각(구 이왕가박물관) 주변의 공간 변화에 관한 연구)

  • Yee, Sun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.10-23
    • /
    • 2021
  • During the Japanese colonial period, the palaces of Joseon were damaged in many parts. Changgyeonggung Palace is the most demolished palace with the establishment of a zoo, botanical garden, and museum. During the Japanese colonial period, the palaces of Joseon were damaged in many parts. This study examined the construction process of Jangseogak(Yi Royal-Family Museum), located right next to the Jagyeongjeon site, which was considered the most important space in the Changgyeonggung residential area of royal family zone, through historical materials and field research. Built in 1911, Jangseogak is located at a location overlooking the entire Changgyeonggung Palace and overlooking the Gyeongseong Shrine of Namsan in the distance. Changes in the surrounding space during the construction of Jangseogak can be summarized as follows. First, in the early 1910s, the topography of the garden behind Jagyeongjeon and part of the Janggo were damaged to create the site of Jangseogak. The front yard was built in the front of Jangseogak, and a stone pillar was installed, and a staircase was installed to the south. In the process, the original stone system at the rear of Yanghwadang was destroyed, and it is presumed that Jeong Iljae and other buildings were demolished. Second, in the 1920s, many pavilions were demolished and the zoo and botanical gardens and museums were completed through leveling. After the Jangseogak was completed, the circulation of the Naejeon and surrounding areas was also changed. Cherry trees and peonies were planted in the flower garden around the front yard of Jangseogak and the stairs, and a Japanese-style garden was created between Yanghwadang and Jibbokheon. Third, in the 1930s, the circulation around Jangseogak was completed in its present form, and the museum, Jangseogak, Zoological and Botanical Gardens, and Changgyeonggung, which became a cherry tree garden, were transformed into a Japanese-style cultural park. After that, the surrounding space did not change much until it was demolished. The restoration of the present palace is a long-term, national project of the Cultural Heritage Administration. The results of this study will provide important data for the restoration plan of Changgyeonggung Palace in the future, and it is expected that it will provide additional information to related researchers in the future.

Interpretation of Landscape Restoration and Maintenance in Changgyeonggung Palace through the Preservation Principles of Cultural Heritage (문화재 보존원칙으로 본 창경궁 조경 복원정비 양상 해석)

  • Kang, Jae-Ung;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.15-31
    • /
    • 2022
  • This study interpreted the logical validity of the landscape restoration and maintenance patterns of Changgyeonggung Palace, where modern landscapes coexist. The results of the study are as follows; First, the changes in the landscape restoration and maintenance attitude concerning the Changgyeonggung management organization were identified. With the establishment of the Office of the Imperial Garden, an imperial property was nationalized. The Cultural Heritage Managing Department was opened in 1961, and Changgyeonggung Palace were preserved as designated as historical sites in 1963. An environmental purification was implemented by the Changgyeonggung Office as a follow-up measure for restoration in 1983. As the Cultural Heritage Administration promoted in 1999 and the Royal Palaces and Tombs Center was established in 2019, the palace has been managed professionally as a palace landscape to provide a viewing environment. Second, In the 'Purification Period of Changgyeongwon(1954~1977)', environmental purification was carried out to restore amusement facilities, install facilities for cherry blossom viewing, and develop the place into a national zoo. In the 'Reconstruction Period of Changgyeonggung(1983~1986)', restoring function as an urban park, reserving green areas, the outside space was recreated in the traditional feel, and the forest area was generally maintained. In the 'Supplementation Period of Traditional Landscape Architecture Space(1987~2009)', a uniform green landscape was created with pine trees and various vegetation landscapes centered on the flower beds. In the 'Improvement and Maintenance Period of Viewing Environment(2010~2022), a master plan was reestablished on the premise of utilization, but maintenance has been carried out in a small scale centering on unit space. Third, regarding the validity of the landscape restoration and maintenance, It was found in terms of 'originality' that the recovery of the palace system has not been expanded for over 40 years in existing areas. The 'characteristics of the times', which shows whether multi-layered history was taken into account, Changgyeongwon was excluded from the discussion in the process of setting the base year twice. In terms of 'integrity,' the area of the Grand Greenhouse where the historic states coexists needs a maintenance policy that binds the greenhouse, carpet flower bed, and Chundangji Pond. The 'utility' identified as the utilization of spaces suggests the establishment of a sense of place in the Grand Greenhouse area, which is concentrated with programs different from other areas.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.