• 제목/요약/키워드: 공력 예측

검색결과 227건 처리시간 0.024초

경험적 최적화 기법을 이용한 자동차 공력저항 예측 프로그램 개발 (Development of a Prediction Program of Automotive Aerodynamic Drag Coefficient Using Empirical Optimization Method)

  • 한석영;맹주성;박재용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.140-145
    • /
    • 2002
  • At present, wind tunnel test or CFD is used for predicting aerodynamic drag coefficient in motor company. But, wind tunnel test requires much cost and time, and CFD has about 30% error. In this study a predicting program of the aerodynamic drag coefficient based on empirical techniques was developed. Also a mathematical optimization method using GRG method was added to the program. The program was applied to six cars. Aerodynamic drag coefficient values of six cars were Predicted with 4.857% average error. The optimization method was also applied to six cars. Three parameters selected from sensitivity analysis were determined to reduce the afterbody drag coefficient to the value established by a designer and when some parameters were changed for a developing automotive, optimal modifiable parameters were determined to preserve the same drag coefficient as the original automotive. It was verified that this program could predict the aerodynamic drag coefficient effectively and accurately, and this program with GRG method could determine optimal values of parameters.

  • PDF

시로코 홴 성능 및 공력 소음 예측에 관한 연구 (Measurement and Prediction of Aerodynamic Noise from Sirocco Fans)

  • 김경호;박계찬;이승배
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.57-64
    • /
    • 1999
  • The prediction method of the performance and aerodynamic noise from a sirocco fan was developed and compared with measured data. To predict the performance of the sirocco fan, the well-known slip coefficients and various loss models were tested and applied to forward curved sirocco impellers. Using loss models proposed for both impeller and casing, the predicted performance characteristics were in good agreement with measured ones by an ANSI test plenum. Various scaling models for aerodynamic noise from the sirocco fan were evaluated and tested against measured power levels in terms of flow coefficient. It was shown that the turbulent broadband sound power from the sirocco fan can be modeled successfully by trailing edge noise.

  • PDF

비행선 동체 공력 특성 예측 (Prediction of the Aerodynamic Characteristics of an Airship Hull)

  • 옥호남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.76-83
    • /
    • 2001
  • The incompressible Reynolds-averaged Navier-Stokes equations are solved to predict the aerodynamic characteristics of an airship hull. The concept of pseudo-compressibility is employed to couple the pressure field with the velocity field. The upwind differencing method for spatial discretization and a line relaxation scheme for time integration are used. The flowfield around the low drag airship hull of fineness ratio 4 is solved for two Reynolds numbers with a wide range of angle of attack. The effect of Reynolds number and transition position is briefly examined together with the change in aerodynamic coefficients due to a gondola attached to the hull, and the results will be used as basic data for the design of a low drag airship hull.

  • PDF

저마하수 난류 끝단 소음 예측 (PREDICTION OF TURBULENCE TRAILING-EDGE NOISE AT LOW MACH NUMBERS)

  • 장강욱;고성룡;서정희;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.249-253
    • /
    • 2005
  • The turbulence noise generated from blunt trailing-edge is numerically predicted by using the hydrodynamic/acoustic splitting method at the Reynolds number based on thickness of flat plate, $Re_h=1000$, and the freestream Mach number $M_o=0.2$. The turbulent flow field is simulated by incompressible large-eddy simulation and the acoustic field is predicted efficiently with the linearized perturbed compressible equations (LPCE) recently proposed by the authors. The turbulent flow characteristics are validated with the results of the previous experimental study and direct numerical simulation. The acoustic properties predicted from LPCE are compared with the solutions of analytical formulations.

  • PDF

포텐셜 유동을 기반으로 한 풍력 터빈 블레이드의 공력 해석 및 후류 예측 기법에 관한 연구 (Potential Based Prediction Methods of Aerodynamic and Wake Simulation of Wind Turbine Blade)

  • 김호건;신형기;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.414-419
    • /
    • 2007
  • This paper describes the prediction of aerodynamic performance and wake of HAWT in normal and yawed flow operation using potential based methods. In order to analyze aerodynamic performance of wind turbine WINFAS program is used, which is based on VLM(Vortex Lattice Method) and CVC(Constant vorticity contour) Free wake model. Some problems of CVC vortex filament method are investigated arid to improve these problems vortex ring wake are introduced in behalf of CVC vortex filament. The prediction results using the vortex lattice wake are compared to experimental data.

  • PDF

상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석 (Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.

축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발 (Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

초음속 유도탄의 동체 와류 예측 및 공력 특성 분석 (PREDICTION OF AERODYNAMIC CHARACTERISTICS AND BODY VORTICES OVER SUPERSONIC MISSILES)

  • 윤성환;김종암;허기훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.308-314
    • /
    • 2010
  • In this study, NASA test model with four cruciform fins is utilized to validate the in-house code. Sur face pressure distribution and aerodynamic coefficients are compared with experimental data. Through extensive validation work, it is verified that the code has capability to predict aerodynamic characteristics of missile configuration. In inviscid analysis through a relatively low computational time, analysis result close to experimental data can be confirmed. However, at high angle of attack more than 20 degree, the accuracy of analysis is gradually decreased due to massive separation. In addition, it has been seen that Reynolds number, turbulence model and numerical method have effects on body vortices and aerodynamic characteristics.

  • PDF

진공청소기 원심 홴의 소음원 분석 및 공력 소음 예측 (Investigation of the noise sources for the centrifugal fan and aeroacoustic noise prediction)

  • 정예은;배영민;문영준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.645-645
    • /
    • 2009
  • In many practical applications of the centrifugal fan, the impeller-diffuser interaction noise is considered as a main source of fan noise. The housing for an electric motor is also expected to play an important role on noise propagation because of its complicated configuration. This study investigates the impeller-diffuser interaction noise and its sources by computing three-dimensional, incompressible flow field of the centrifugal fan in motor housing. The effect of motor case on fan noise characteristic is then investigated using the Brinkman penalization method, while the noise source associated with impeller-diffuser interaction is mathematically modeled. It is found that the present methodology combined with mathematical description of noise source provides a fairly good agreement with the experimental results, indicating that the motor housing has significant effect on noise characteristics. Finally, aeroacoustic noise prediction for various impeller-diffuser blade count ratios is conducted for noise reduction.

  • PDF

박용 터보챠저 사류 터빈의 공력설계 (A Aerodynamic Design of Mixed Flow Turbine of the Marine Turbocharger)

  • 김홍원;오국택;갈상학;하지수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.670-675
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for turbine of the marine middle engine turbocharger. The performance characteristics of turbocharger turbine are investigated at various operating conditions using mass flow rate and computational flow analysis for rotor and nozzle at design point are performed. Preliminary design results are performed by applying mean line and radial equilibrium theory. Performance prediction and flow analysis results show good agreement with experiments. From 3 dimensional flow analysis result, efficiency is 0.6% greater than design point. Therefore, this design approach is useful for preliminary design, and helps to increase the design capability for optimized rotor blade.

  • PDF