• Title/Summary/Keyword: 공력 성능 특성

Search Result 162, Processing Time 0.018 seconds

Computation of Oscillating Airfoil Flows with SST Turbulence Model (SST 난류 모델을 이용한 진동하는 익형 주위의 유동장 해석)

  • Lee Bo-sung;Lee Sangsan;Lee Dong Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.131-136
    • /
    • 1999
  • 박리를 수반하는 진동하는 이차원 익형 주위의 비정상 유동장에 대해 SST 난류 모델을 이용하여 해석을 수행하였다. SST 모델은 정상 유동장 해석에서 기존의 난류 모델에 비해 우수한 성능을 보인다고 알려져 있으나 큰 박리영역에서 공력 계수의 진동 현상을 보이는 등 비정상 유동장 해석에 문제점을 보이고 있다. 본 논문에서는 이러한 공력 계수의 진동 현상이 SST 모델을 이차원으로 확장하는 과정에서 발생한 것임을 밝히고 이에 대한 보완을 통하여 수정된 SST 모델을 제시하고자 한다. SST 모델의 기본이 되었던 BSL 모델 및 SST 모델, 수정된 SST 모델을 사용하여 정상 유동장과 비정상 유동장 해석을 수행하여 각 모델의 난류 유동장 해석 특성을 비교하고 이를 통하여 수정된 SST 모델이 박리를 수반하는 비정상 유동장 해석에서 원래의 SST 모델에 비해 향상된 결과를 나타남을 알 수 있었다.

  • PDF

A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.

Papers : A Study on the Development and Performance of Hypervelocity Launcher (논문 : 초고속 발사장치의 개발 및 성능에 관한 연구)

  • Choe, Byeong-Cheol;Heo, Cheol-Jun;Tak, Jeong-Su;Bae, Gi-Jun;Byeon, Yeong-Hwan;Lee, Jae-U;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.96-104
    • /
    • 2002
  • 탄체가속기용 초기 발사장치로 사용 가능한 건국대 초고속 발사장치가 개발되었다. 이는 2단계 기포 (gas gun) 형태의 발사장치로 공기를 작동 기체로 사용하여 무게 22g의 탄체를 750m/sec로 가속할 수 있 는 성능을 보인다. 초고속 발사장치의 성능 특성을 알아보기 위하여, 구동부의 압축 특성과 작동 특성에 대한 성능 실험을 수행하였으며 실험으로부터 피스톤에 의한 압축 이득과 1,2차 구동부간에 발사장치의 성능을 최상으로 유지할 수 있는 값들이 존재함을 확인하였다. 초고속 비행체의 공력 특성 및 주위의 유동 해석에 응용 가능한 고속 탄환체에 대한 흐름의 가시화를 수행하여 수치적 계산 결과와 비교하였으며, 향후 고속유동의 물리적 현상 해석에 이용될 수 있음을 확인하였다.

Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft (PARWIG선의 공력특성에 관한 풍동실험)

  • H.H. Chun;J.H. Chang;K.J. Paik;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.57-68
    • /
    • 2000
  • The Power Augmented Ram(PAR) effect, which blows the down stream of the propellers into the underside of the wings and hence increases the pressure between the lower surface of the wings and the sea surface, is known significantly to enhance the performance of the WIG concept by reducing the take-off and landing speeds. The aerodynamic characteristics of a 20 passenger PARWIG are investigated by wind tunnel tests with the 1/20 scale model. The efflux of the forward mounted propellers are simulated by jet flows with a blower and duct system. The lift, drag, and pitch moment of the model with various ground clearances, angles of attack and flap angles are measured for the various jet velocities, jet nozzle angles, horizontal and vertical positions of the nozzle, and the nozzle diameters. The aerodynamic characteristics of the PARWIG due to these parametric changes are compared and pertinent discussions are included. It is shown that the proper use of the PAR can increase the lift coefficient of as much as up to 4.

  • PDF

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Design Factors of an Indoor Room Air-Conditioner (룸에어콘 실내기의 설계인자 변화에 따른 관류홴의 공력성능 연구)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.33-38
    • /
    • 2005
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance of a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. This experiment was carried out with a constant revolution number of 700 rpm in a cross-flow fan installed in the fan tester. The static pressure, flowrate, torque, and revolution number were measured in this paper. Also, the pressure coefficient and the efficiency were analysed according to the various assembly conditions using a stabilizer setup angle, a stabilizer clearance, and a rear-guider clearance in the indoor room air-conditioner.

  • PDF

Aerodynamic Analysis of Various Winglets (윙렛 형상에 따른 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2008
  • Aircraft fuel efficiency is one of main concerns to aircraft manufacturers and to aviation companies because jet fuel price has tripled in last ten years. One of simple and effective methods to increase fuel efficiency is to reduce aircraft induced drag by using of wingtip devices. Induced drag is closely related to the circulation distribution, which produces strong wingtip vortex behind the tip of a finite wing. Wingtip devices including winglets can be successfully applied to reduce induced drag by wingtip vortex mitigation. Winglet design, however, is very complicated process and has to consider many parameters including installation position, height, taper ratio, sweepback, airfoil, toe-out angle and cant angle of winglets. In current research, different shapes of winglets are compared in the view of vortex mitigation. Appropriately designed winglets are proved to mitigate wingtip vortex and to increase lift to drag ratio. Also, the results show that winglets are more efficient than wingtip extension. That is the reason B-747-400 and B-737-800 chose winglets instead of a span increase to increase payload and range. Drag polar comparison chart is presented to show that minimum drag is increased by viscous drag of winglet, but at high lift, total drag is reduced by induced drag decrease. So, winglets are more efficient for aircraft that cruises at a high lift condition, which generates very strong wingtip vortex.

  • PDF

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

Aerodynamics Characteristics on a Canard-Controlled Projectile (카나드에 의하여 방향조종 되는 탄의 공력특성에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • An experimental study was conducted on a subsonic wind tunnel to obtain aerodynamic coefficients for various situations in order to control the direction of a projectile. The angle of attack on the projectile was varied from $-5^{\circ}$ to $15^{\circ}$ and the roll angle of canard was changed from $0^{\circ}$ to $90^{\circ}$. The angle of attack on the canard was adjusted from $-20^{\circ}$ to $20^{\circ}$ and various inlet velocities were applied. Maximum Reynolds number based on the diameter of projectile was $5.5{\times}10^5$. The measured aerodynamic coefficients showed the same results for the various inlet velocities, and the highest effect on the canard was shown when the canard was set to the roll angle of $0^{\circ}$.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.