• Title/Summary/Keyword: 공력해석

Search Result 690, Processing Time 0.028 seconds

CFD Analysis of CRW Unmanned Aerial Vehicle and Drag Reduction Strategy (CRW 무인 항공기의 공력 해석 및 항력 감소 방안)

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.20-27
    • /
    • 2004
  • In this study, CFD analysis for 2D ellipse and 3D CRW UAV are performed. Furthermore, flow analysis around a hub connecting body and rotor is analyzed and a strategy to reduce the drag caused by the hub is sought. Also, the idea of fairing installation is confirmed by a wind tunnel test.

Numerical Analysis of Aerodynamic Performance for Tilt Rotor Aircraft in Cruise Mode Using Chimaera Grid Method (겹침격자 기법을 이용한 틸트로터의 순항모드에 대한 공력성능 수치해석)

  • Ko S. H.;Ahn S. W.;Kim B. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.87-90
    • /
    • 2004
  • A numerical analysis was made for the unsteady flow fields of rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Navier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by six multi-block Chimera grids. Simulated unsteady flow fields of rotating blades were studied in several different view points.

  • PDF

Computational Investigations of Adverse Effects of Deploying Spoilers on Airfoil Aerodynamic Characteristics (스포일러 동적 작동에 따른 에어포일 공력특성 역전현상 연구)

  • Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.335-342
    • /
    • 2020
  • Tailless aircraft designed for stealth efficiency uses spoilers instead of rudders for the directional control. When the spoiler is rapidly deployed, highly nonlinear and unsteady aerodynamic characteristics can be generated, resulting in adverse effects on aircraft flight performance. This paper investigates the aerodynamic characteristics of an airfoil with moving spoiler using dynamic mesh CFD technique. The effects of spoiler operation speed, mounting location, and deployment scheduling are analyzed to reduce the adverse effects of the spoiler's dynamic operation. The results shows that the adverse effects of dynamic spoiler can be reduced by appropriate selection of the spoiler mounting location and deployment scheduling.

Steady Aerodynamic Characteristics of FAST Flying over Nonplanar Ground Surface (비평면 지면을 비행하는 FAST의 정상상태 공력특성)

  • Cho, Yeon-Woo;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • The aerodynamic characteristics of FAST(Future Air Speed Transit) combined the body with tandem wing flying over nonplanar ground surface are investigated by using a boundary element method. To validate the present method, results of the present analysis are compared with the experiment and other numerical results. The arrangement of the tandem wing is determined to secure sufficient aero-levitation force and the stability through the analysis of the aerodynamic characteristics of the FAST. The FAST has the maximum lift characteristics when the tandem wing with lower endplate is located at the front side and the rear side of the body. The stability of the FAST can be secured by using the flaperon of the tandem wing.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

A Study on the High Efficiency Aerodynamic Performance of 4.3MW Class Wind Power System Blade for Separation Blade (분리형 블레이드를 위한 4.3MW급 풍력 발전 시스템 블레이드의 고효율 공력 성능 연구)

  • Yonggyu Lee;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.94-99
    • /
    • 2023
  • Recently, renewable energy has been widely used as a source of wind energy and solar energy due to the shortage of fossil fuels and environmental problems. Against this backdrop, wind energy is emerging as an important energy source, and the wind power market is showing rapid growth worldwide. In this study, a high-efficiency wind turbine blade was designed with an integrated blade aerodynamic design for prior research on separate blades. The blade airfoil was applied as NACA 4418, and it was verified by comparing it with the analysis results to evaluate the newly designed blade.

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.

An Aerodynamic Characteristics and Morphing Analysis of Bridle Line for The Gaori Kite (가오리연 공력 특성과 방줄의 모핑 해석)

  • Kang, Chi-Hang;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.359-366
    • /
    • 2017
  • In this paper, aerodynamic data of the Gaori kite was constructed through the wind tunnel experiment taking into consideration all the angles of attack formed during the flight of the Gaori kite. From this aerodynamic data, we made a morphing analysis of the relative length of the front bridle to the rear bridle required to achieve equilibrium flight as the angle of attack of the Gaori kite or the azimuth angle change. As a result, it was found that the relative length of the front bridle to the rear bridle depends entirely on the chord length of the kite, the relative wind speed and changes morphed according to the angle of attack. Using this information data, one can adjust the relative length of the bridle line to suit the kite attitudes and flight environments handling the kites that maintain optimal flight performance.

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

Numerical Study on Aerodynamic Performance of Counter-rotating Propeller in Hover Using Actuator Method (Actuator 기법을 이용한 제자리 비행하는 동축 반전 프로펠러 공력 성능에 관한 수치적 연구)

  • Kim, Dahye;Park, Youngmin;Oh, Sejong;Park, Donghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.30-44
    • /
    • 2021
  • Experimental investigation of counter-rotating propellers is subject to multiple time and cost constraint because of additional design parameters unlike single propeller. Also, a lot of computing time and resources are required for numerical analysis due to consideration of the interference between the upper and lower propellers. In the present study, numerical simulations were conducted to investigate the hover performance of counter-rotating propellers by using actuator method which is considered to be time-efficient. The accuracy of the present numerical methods was validated by comparing the ANSYS Fluent which is commercial CFD code. The axial spacing and rotational speed were selected as the analysis variables, and the aerodynamic performance was obtained under various conditions. Based on the obtained results, the Figure of Merit (FM) of single propeller and counter-rotating propellers and a prediction factor which enables prediction of counter-rotating propeller performance using a single propeller were derived to evaluate availability of the actuator method.