• Title/Summary/Keyword: 공동유동

Search Result 331, Processing Time 0.023 seconds

Flow Variation Analysis of Cavity Depending on Aspect Ratio using EDISON_CFD (EDISON_CFD를 이용한 세장비에 따른 공동의 유동 변화 분석)

  • Ha, Heon-U
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.349-353
    • /
    • 2013
  • 공동주위의 유동에 대한 연구결과를 보면 개방형 공동(L/D<10)과 밀폐형 공동(L/D>13)으로 구별하는 데 개방형 공동은 앞전에서 발생한 자유전단층이 뒷전 부근에 재부착하여 공동을 완전히 연결하므로, 자유전단층과 외부유동과의 상호작용으로 발생하는 심한 압력변화에 의해 진동현상이 나타나게 된다. 이것은 큰 소음을 유발하고, 구조물의 고장 혹은 파괴의 원인이 되기도 하고, 공력 성능 및 안정성에 해를 주고 민감한 계기를 손상 시킬 수도 있다. 본 논문에서는 공동을 연구하기 위해 EDISON_CFD를 사용하여 공동의 시뮬레이션하기 위해 격자를 구성하고 세장비를 각각 1/5, 1/3, 1/2, 1, 2, 5 로 변화를 주어 M=1.5 일 때 밀도, 압력, 마하수와 유동구조를 세장비에 따라 결과를 비교, 분석한다.

  • PDF

Groundwater Flow Characteristics Affected by the Seawater Intrusion near Simulated Underground Storage Caverns in the Coastal Area (임해지역의 모의 지하 비축 시설 주변에서 해수 침투에 의한 지하수 유동 특성)

  • 황용수;배현숙;서동일;김경수;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 1999
  • There are three major processes to impact the groundwater flow near underground storage caverns in the coastal area; effect of topography, effect of sea water intrusion, and effect of excavation. In this paper, the effects of three items were numerically studied to identify the major cause for altering the flow pattern. It turned out that the excavation is the most significant effect on the groundwater flow system. The groundwater pressure distributions and consequent groundwater pathways were significantly altered near the openings. By increasing the groundwater pressures from water curtain holes, the potential leakage of storage cavern was properly prevented

  • PDF

Flow instability of cryogenic fluid in the downstream of orifice (극저온 유체의 공동 발생에 의한 오리피스 후류의 유동 불안정)

  • Lee, Se-Young;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.695-702
    • /
    • 2008
  • Flow instability in the rocket turbo pump systems can be caused by various elements such as valve, orifice and venturi and etc. The formation of cavitation specially in the propellant feeding system can trigger the mass flow and pressure oscillation due to cyclic formation and depletion of cavitations. If the cryogenic propellant are used, which is very sensitive to temperature variation, the change of propellant properties due to thermodynamic effect should be accounted for in the flow analysis. This study focuses on the formation of cryogenic cavitation adopting MUSHY IDM model suggested by Shyy and coworkers. Also, the flow instability is investigated with developed numerical code in the downstream of orifice flow. To this end, three different orifices are selected and investigated by the numerical calculation.

Experimental/ Computational Study on the Passive Control of Supersonic Cavity Flow using a Sub-Cavity (Sub-cavity를 이용한 초음속 cavity 유동의 피동제어에 대한 실험 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.295-298
    • /
    • 2007
  • The effectiveness of passive control techniques for reducing the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed in the upstream edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF

Reduction of the Cavity Flow Oscillations at Supersonic Speeds (초음속 공동유동에서의 진동감소)

  • Kang, Min-Sung;Shin, Choon-Sik;Kwon, Joon-Kyung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.345-348
    • /
    • 2008
  • The subcavity passive control technique is used in present study. Cavity-induced pressure oscillation has been investigated numerically for a supersonic three-dimensional flow over rectangular cavities at Mach number 1.83 at the cavity entrance. The three-dimensional, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme. The results showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate.

  • PDF

A Study on the Reduction of Supersonic Cavity Pressure Oscillations Using a Sub-Cavity System (보조공동을 이용한 초음속 공동내부의 압력진동 저감에 관한 연구)

  • Shin, Choon-Sik;Jeong, June-Chang;Suryan, Abhilash;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Numerical computations were carried out to analyze the effect of a sub-cavity at several inlet Mach numbers on the control of cavity-induced pressure oscillations in two-dimensional supersonic flow. The present passive control method, the sub-cavity applied to the front wall of a square cavity, was studied for the inlet Mach numbers of 1.50, 1.83 and 2.50. The results show that the sub-cavity is effective in reducing the oscillations, and a resultant amount of the reduction depended on the inlet Mach number, the length of flat plate, and the depth of sub-cavity used as an oscillation suppressor.

LARGE EDDY SIMULATION OF THE COMPRESSIBLE FLOW OVER A OPEN CAVITY (큰에디모사기법을 이용한 공동 주위의 압축성유동 해석)

  • 오건제
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • Large eddy simulation is used to investigate the compressible flow over a open cavity, The sub-grid scale stresses are modeled using the dynamic model. The compressible Navier-Stokes equations are solved with the sixth order accurate compact finite difference scheme in the space and the 4th order Runge-Kutta scheme in the time. The results show a typical flow pattern of the shear layer mode of oscillation over the cavity. The votical disturbances, the roll-up of vorticity, and impingement and scattering of vorticity at the downstream cavity edge can be seen in the shear layer. Predicted acoustic resonant frequency is in good agreement with that of the empirical formula. The mean flow streamlines are nearly horizontal along the mouth of the cavity. The pressure has its minimum value in the vortex core inside the cavity.

Numerical Study of Flow Characteristics of Scramjet with a Cavity Flameholder (스크램제트 공동 화염 보염기 형상에 따른 유동 특성의 수치적 연구)

  • Jang, Won-Geun;Lee, Hak-Jin;Choe, Seong-Im
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.603-609
    • /
    • 2014
  • 차세대 제트 추진기관으로 주목받고 있는 스크램제트 엔진의 핵심은 연소기 내부에서의 성공적인 초음속 연소를 필요로 한다. 초음속 연소는 공기-연료 혼합(fuel-air mixing)의 정도에 따라 연소효율이 영향을 받게 된다. 공동형 화염 보염기(cavity flameholder)는 재순환 영역(recirculation zone)을 생성하여 연료 혼합의 효율을 높여 지속적인 초음속 연소가 진행될 수 있는 시간을 제공한다. 본 연구에서는 EDISON 전산유체역학 소프트웨어를 이용하여 공동형 화염 보염기를 지나는 초음속 유동의 재순환 영역과 전압력 변화에 대한 전산 해석을 수행하였다. 초기 형상을 생성하여 유동 해석을 수행한 후, 3개의 형상 변수에 대한 매개 변수 연구를 통하여 공동의 형상과 위치에 따른 재순환영역의 제어가 가능함을 확인하였다.

  • PDF

Numerical Study of Unsteady Supersonic Flow Behind a Rearward-Facing Step with Slot Injection (측면제트분사가 있는 후향계단 후류의 비정상초음속유동에 대한 수치적 연구)

  • Kim,Jong-Rok;Kim,Jae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.97-103
    • /
    • 2003
  • Numerical research has been done for the transverse jet behind a rearward-facings step in turbulent supersonic flow without chemical reaction. Purpose of transverse jet is to enhance mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated with the Navier-Stokes equations with two-equation k-$\varepsilon$ turbulence model. Numerical method is used high-order upwind TVD scheme. Eight cases are computed for different slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet acts as an obstacle. The numerical results thus show the periodic phenomenon.

Effects of Mach Number on the Control of Supersonic Cavity Pressure Oscillations (초음속 공동내부의 압력진동 제어에 미치는 기류 마하수의 영향)

  • Shin, Choon-Sik;Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.119-122
    • /
    • 2009
  • Numerical computations were carried out to analyze the effect of inlet Mach number and sub-cavity on the control of cavity-induced pressure oscillations in two-dimensional supersonic flow. A passive control method wherein a sub-cavity was introduced on the front wall of a square cavity was studied for Mach numbers 1.50, 1.83 and 2.50. The results showed that sub-cavity is effective in reducing the oscillations at different inlet Mach numbers. The resultant amount of attenuation of pressure oscillations depended on the inlet Mach number, length of the flat plate, and the depth of the sub-cavity used as an oscillation suppressor.

  • PDF