• Title/Summary/Keyword: 공기-물 경계면

Search Result 27, Processing Time 0.03 seconds

Experimental Investigation on the Droplet Entrainment in the Air-Water Horizontal Stratified Flow (물-공기 수평 성층류 유동조건에서 액적이탈 현상에 대한 실험연구)

  • Bae, Byeong Geon;Yun, Byong Jo;Kim, Kyoung Doo;Bae, Byoung Uhn
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • In the high convective gas flow condition, irregular shaped water waves from which droplet entrainment occurs are generated under horizontally stratified two-phase flow condition. KAERI proposed a new mechanistic droplet entrainment model based on the momentum balance equation consisting of the shear stress, surface tension, and gravity forces. However, this model requires correlation or experimental data of several physical parameters related to the wave characteristics. In the present study, we tried to measure the physical parameters such as wave slope, wave hypotenuse length, wave velocity, wave frequency, and wavelength experimentally. For this, an experiment was conducted in the horizontal rectangular channel of which width, height, and length are, respectively, 40 mm, 50 mm, and 4.2 m. In the present test, the working fluids are chosen as air and water. The PIV technique was applied not only to obtain images for phase interface waves but also to measure the velocity field of the water flow. Additionally, we developed the parallel wire conductance probe for the confirmation of wave height from PIV image. Finally, we measured the physical parameters to be used in the validation of new droplet entrainment model.

Analysis of Calculation Model for Specific Air-water Interface Area in Unsaturated Porous Media (불포화 다공성 매질체의 공기-물 경계면 비표면적 계산모델 분석)

  • Kim, Min-Kyu;Kim, Song-Bae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.83-93
    • /
    • 2006
  • In unsaturated porous media, the air-water interface (AWI) plays an important role in removing of biocolloids such as bacteria, viruses, and protozoan (oo)cysts. In this study, four models related to calculation of specific AWI area are analyzed to determine the appropriate model, and the selected models are verified using the previously reported experimental data. The results indicate that the modified model from Niemet et al. (2002) is the most appropriate tool for calculating the specific AWI area using the van Genuchten (1980) parameters obtained from the water retention curve. Hence, it is expected that this model could be used to quantitatively determine the attachment of biocolloids to AWI in the transport modeling of biocolloids in unsaturated porous media.

An experimental study on the measurement of real-scale tractive force using advanced shear plate (고성능 전단평판을 이용한 실규모 소류력 측정에 관한 연구)

  • Jung, Dong Gyu;Kim, Kwang Soo;Kim, Young Do;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.14-14
    • /
    • 2021
  • 개수로에서는 반드시 자유수면이 있으며, 따라서 물과 공기와의 마찰은 관수로에 비해 상대적으로 매우 작고, 개수로의 전단응력 분포는 관수로와 달리 근본적으로 비대칭이다. 따라서 전단응력은 수로 바닥이나 측면에서만 작용하게 된다. 이러한 평균 전단응력 개념은 흐름에 의해 경계면 구성재료가 이동하는 이동상 수리학에서 유사이송 능력을 해석하는 기준이 되며, 경계면의 전단응력은 힘으로 표시하여 통상 소류력이라 한다. 이러한 복잡한 유체거동은 하천시설물 설계, 시공 및 관리에 있어서 구성재료의 보호능력에 따라 예상하지 못한 조건에서 쉽게 파손될 수 있다. 국내 하천의 경우 한계유속과 한계소류력에 의해 하천설계에 적용되고 있다. 한계 유속의 경우 간단한 수식에 의해 산정될 수 있지만 실제 하천의 보호능력을 대표하기는 힘들기 때문에 한계소류력이 동시에 고려되어야 한다. 한계소류력은 개수로 흐름에서 복잡하게 발생하는 이차류나, 난류 특성에 의해 산정하거나 예측하기는 매우 어렵다. 한계 소류력 뿐만 아니라 하천을 구성하는 재질의 조도계수 역시 균일하지 못하고 매우 예측하기 어렵다. 따라서 본 연구에서는 이러한 복잡한 양상을 나타내는 수리학적 요소에 대해 표준화된 실험수로에서 실험을 통해 평가하고, 체계화된 설계 지침이 되고자 연구를 진행하였다. 본 연구에서는 자연하천과 유사한 조건의 경사를 가지는 경사수로와 경사의 영향에서 자유롭게 평가를 진행하고자 기존 연구를 바탕으로 제작된 소류력 측정장치를 이용하였다. 하천의 설계나 평가에 적용되는 평균 소류력 개념은 복잡한 난류흐름에서 평가지표로써 대표하기 힘들기 때문에 유사 하천환경의 바닥에서 발생하는 소류력을 직접 측정하였다. 본 연구에 사용된 장치는 난류유속 u', v'을 이용하여 Reynolds stress산정하여 Total shear stress를 추정하는 기법을 사용하여 검증하였다.

  • PDF

FTIR and Moisture Effects on Optical Information Transfer at Interface of Air and Glass (공기-유리 계면에서 광학정보 전달에 미치는 불완전 반사 및 수분 효과)

  • Han, Won Heum;Han, Ji Heum;Kim, Jee Hyen;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 2012
  • The transfer mechanism of optical information at the interface of air and glass (the air-glass IF) has been investigated by thoroughly fulfilling the theoretical and experimental analyses regarding the FTIR (Frustrated Total Internal Reflection) and moisture effects on the fingerprint onto a glass cup with water. As for the fingerprint onto a glass cup with water its image was observed to be very vivid, which turned out to be due to the difference between the two light intensities reflected on the air-glass IF and the wet fingerprint ridge by manipulating the optical theories such as Fresnel relation, Snell's law, FTIR, GT (general transmission) and so on. In addition, the experimental inspection for FTIR and moisture effects on the fingerprint image also evidenced the fact that the vivid fingerprint image originated from the moisture effect rather than the FTIR phenomenon.

A Study on the Measurement of River Ice Thickness by Using X-band Scatterometer (X-밴드 산란계를 이용한 하천 얼음 두께 측정에 관한 연구)

  • Han, Hyang-Sun;Kim, Bum-Jun;Lee, Hoon-Yol
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this study, we setup a ground-based scatterometer using an antenna of which the center frequency is 9.5 GHz (X-band), and measured radar backscatterings from air/ice and ice/water interfaces to extract ice thickness. Both of air/ice and ice/water interfaces make strong radar backscatterings and so we can clearly identify two peaks in measured data by scatterometer. By using the distance of two peaks and refractive index of ice, we confirmed that it is possible to measure ice thickness. Field survey was performed at the downstream of Jiam River flowing into Chuncheon Lake. We measured radar backscattering from river ice along a survey path and extracted ice thickness. The ice thickness map of the downstream of Jiam River was produced by using kriging which is one of well known interpolation methods. The ice thickness was about 50 cm along the mainstream while ice was thin as 30 ~ 40 cm at a fast-flowing meander. Ice thickness was particularly thinner at some locations than that of surrounding areas even in the mainstream region of constant flow. This was because of impurities in ice or artificially formed refrozen holes after fishing. We expect that this study helps to expand utilization field of X-band SAR and airborne scatterometer system.

A Numerical Analysis on the Thermal Protection System Applied Phase Change Material (상변화물질을 이용한 열방어체계의 수치해석 연구)

  • Oh, Chang-Mook;Yoo, Yung-Joon;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.80-86
    • /
    • 2012
  • This study is for figuring out a possibility of realization of the thermal protection system(TPS) for temporary use under high temperature condition and improving a design of the future TPS. On this purpose, environmental condition of the system has been simplified: the boundary conditions consist of a internally heating surface and a externally heated surface which is simulating the external high temperature condition. Configuration of the system is simplified as a hexahedon. Melting characteristics of the phase change material(PCM) and air temperature variation of TPS with or without connector have been numerically analyzed and compared. As a result of numerical analysis, the heat from the internally heated surface could not be effectively transferred. Therefore, temperature of inner space has been increased.

Computational Analysis of Mitigation of Shock wave using Water Column (액주를 이용한 충격파 완화에 대한 수치해석)

  • Jayabal, Rajasekar;Tae Ho, Kim;Heuy Dong, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.

부산광역시에 대한 입자상 물질의 건성침적속도 수치 모의

  • 반수진;이황운;문난경
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.35-37
    • /
    • 2001
  • 입자상 물질에 대한 건성침적속도를 구하는 두 가지 모형 중 Slinn의 모수화로 구축된 건성침적모형이 ADOM 건성침적모형에 비해 좀 더 신뢰성있는 결과를 산출하였고 부산광역시에서의 입자상 물질에 대한 건성침적속도 수치모의 결과도 전반적으로 거칠기 길이가 큰 산림지역에서 높은 값이 나타남을 보여주었다. 입자상 물질의 건성침적속도 계산에 있어 가장 중요한 것은 대상 입자의 크기이므로 무엇보다도 그 물질에 대한 정확한 크기분포에 대한 규명이 있어야 하고 또한 본 연구에서는 다루지 못한 수면의 높은 풍속에서의 물결 파괴, 물보라 형성 그리고 물과 공기경계면 근처의 습한 지역에서 입자 성장의 영향 등을 고려하는 좀더 자세한 연구가 추후에 이루어져야 할 것이다.

  • PDF

Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier (입구온도 변화가 중공사형 나피온 막가습기의 성능에 미치는 영향에 대한 연구)

  • Hwang, Jun-Young;Chang, Hyo-Sun;Kang, Kyung-Tae;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.361-369
    • /
    • 2011
  • The effect of an increase in the temperature of inlet air on the performance of a membrane humidifier for a PEMFC (Polymer Electrolyte Membrane Fuel Cell) vehicle was investigated both experimentally and numerically. A shell-and-tube type gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling was also conducted in simplified geometry of a single tube to explain this nonlinear behavior. The simulation revealed that the local water flux varies nonlinearly and dramatically along the tube. The analysis was based on the inverse relationship between the increase in temperature and decrease in relative humidity, both of which seriously affect the water conductivity of the membrane.

Application of Image Technique and Optical Fiber Sensor for Air-water Mixture Flow (기포흐름 측정을 위한 영상기법 및 광섬유센서 적용)

  • Ryu, Yonguk;Jung, Tae-Hwa
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.535-543
    • /
    • 2015
  • Measurements of multiphase flows containing bubbles have been limited because most existing methods target one phase flows. Especially, multiphase flows with a high void ratio have been rarely successful in measurements due to the sudden change of density and thick interfaces between air and water. This study introduces two methods that are capable of measuring flow fields regardless of bubble void ratio, named bubble image velocimetry and bundle fiber optic flow meter. The calculation of the depth of field is suggested to reduce and estimate errors by perspective image velocimetry. The bundle fiber optic flow meter is designed to increase a measurement rate using many optical fibers with a thin diameter. The two methods measured bubble plumes to test reliability and the velocity measurements show good agreement. In addition a hydraulic jump, one of the multiple flows in rivers was measured to test applicability of the methods.