• Title/Summary/Keyword: 공기화학반응

Search Result 307, Processing Time 0.03 seconds

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

A Study on Connection of Fuel Processor and NG blower for Small Commercial Fuel Cell System (건물용 연료전지 시스템용 연료처리장치와 연료승압 블로워 연계 특성에 관한 연구)

  • Kim, Jaedong;Jang, Sejin;Kim, Bonggyu;Kim, Jinwook;Han, Sienho;Park, Dalryung
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.36-44
    • /
    • 2017
  • The small commercial fuel cell is a new energy system that produces electricity and heat through electrochemical reaction between air and hydrogen. In Korea, hundreds of domestic small commercial fuel cell systems have been installed and operated every years and many parts in fuel cell systems depend on overseas products. KOGAS(Korea Gas Corporation) has developed the fuel processor which is an important part of fuel cell system and has evaluated the long-term durability. And KOGAS has evaluated domestic and overseas NG blower and fuel processor connected to NG blower. The fuel processor developed by KOGAS have maintained an efficiency of 76% and constant performance over 3,000 hours. The NG blower developed in Korea showed similar characteristics as overseas NG blower in the evaluation of power consumption according to rear pressure and outside temperature. The fuel processor module, fuel processor connected to BOP showed excellent performance.

정전구동 방식의 연동형 마이크로펌프의 제작

  • Hong, Pyo-Hwan;Jeong, Dong-Geon;Gong, Dae-Yeong;Pyo, Dae-Seung;Lee, Jong-Hyeon;Lee, Dong-In;Jo, Chan-Seop;Kim, Bong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.448-448
    • /
    • 2013
  • 최근 생물학적 분석 기구에서 시료를 처리, 분리, 검출, 샘플링 또는 분석하기 위해 사용되는 마이크로펌프(Micropump)에 대한 관심이 높아지고 있다. 또한 전자소자의 성능과 신뢰성의 증진을 위한 전자소자의 열 문제를 해결하기 위해 냉각장치로 마이크로 펌프가 적용되기도 한다. 그 외에도 마이크로펌프는 다양한 분야에 응용이 가능하다. 마이크로펌프는 작동 방식에 따라 압전형, 공압형, 열공압형, 연동형 등의 여러 종류로 분류되고 있다. 그중에서도 최근에는 연동형 마이크로 펌프의 개발이 각광받고 있다. 기존의 연동형 펌프들은 다중 챔버를 가지고 있으며, 각각의 챔버 내에서 Dead volume이 많이 발생할 뿐만 아니라 이상적인 연동운동과는 차이가 많이 나는 문제점을 가지고 있다. 또한 압전방식과 열공압방식은 느린 응답성으로 인해 효율적인 유체 이동이 어렵다. 본 논문에서는 이상적인 연동운동을 구현하기 위하여 기존의 연동형 펌프의 단점을 보완하고, 하나의 챔버에 다중전극 구조를 가지는 정전기력방식의 연동형 펌프를 개발하였다. 정전기력방식으로 펌프를 구동함으로써, 저전력으로 펌프구동이 가능하며, 하나의 챔버에 다중전극을 설치함으로써 이상적인 연동운동을 재현하였다. 그리고 Dead volume을 최소화 하였다. 또한, 빠른 반응속도로 인해 효율적인 유체 이동을 실현시킬 수 있었다. 본 연구에서 제안된 마이크로 펌프의 구성은 크게 챔버, 박막, Inlet/outlet hole으로 구성되었다. 챔버는 Si-wafer에 wet etching 공정으로 제작 하였고 그 위에 알루미늄 박막을 200 nm 증착시켰다. 챔버는 가로 32 mm, 세로 5 mm, 깊이는 $15{\mu}m$, 부피는 $200{\mu}l$으로 제작되었다. 박막은 폴리이미드(polyimide)를 사용하여 $3{\mu}m$의 두께로 제작 되었으며, 폴리이미드 박막 사이에는 200 nm 두께의 4개의 알루미늄 박막 전극을 삽입시켰다. 삽입된 4개의 전극에 개별적인 전기신호를 보냄으로써 연동운동이 가능하다. Inlet/outlet hole은 직경 2 mm의 크기로 제작되었으며, 튜브를 연결하여 유체가 흐를 수 있는 체널을 형성하였다. 제작된 마이크로 펌프의 구동전압은 115 V이며, 인가되는 주파수를 1 Hz~100 KHz까지 변화시켜 유량을 측정하였다. 작동 유체는 공기이며, 유량측정은 튜브 내에 물방울을 삽입하여 시간에 따른 이동거리를 관측하였다. 측정결과 2.2 KHz에서 2.4 mm/min의 가장 높은 유량을 확인할 수 있었다. 본 연구를 통해 제안된 연동형 마이크로펌프는 이상적인 연동운동이 가능함으로써 기존의 연동형 방식의 문제점을 보완하였으며, 생명과학, 의학, 화학 등의 분야에서 적용이 가능하리라 기대된다.

  • PDF

Manufacture of Inorganic Materials Thin Film Solar Cell using Titanium Dioxide (이산화티타니움을 사용한 무기질 박막형 태앙전지의 제작)

  • Lee, Kyung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.451-463
    • /
    • 2009
  • The purpose of this research is to develop thin film materials and fabrication process for efficient $TiO_2$/CdTe solar cells. In this work photocatalyst titanium dioxide was prepared by sol-gel procedure according to reaction condition, the mole ratio of $H_2O$/TTIP, pH of solution and aging condition of powder. The prepared titanium dioxide was thermally treated from 300 to $750^{\circ}C$. Maximum intensity of anatase phase of titanium dioxide was achieved by calcination at $600^{\circ}C$ for 2 hr. And it was mixture of anatase and rutile phase when temperature of calcination was $750^{\circ}C$. It has been known that the properties of synthesized titanium dioxide according to aging time and calcination temperature was converted to anatase phase crystal on increasing of aging time. Also the current density has been increased with aging time and temperature, the efficiency has been increased with because of reason on above results. The formation of chemical bonding on oxygen and cadmium telluride under oxygen circumstances had been observed, and oxygen of thin film surface on cadmium telluride had been decreased with the treatment of chromate and hydrazine. As results had been shown that the energy conversion efficiency of cadmium telluride use by rapidly treatmented heat at the condition of $550^{\circ}C$ under air circumstance got 12.0%, 6.0% values according to $0.07cm^2$, $1.0cm^2$ surface area, respectively.

Uranium Recovery from Nuclear Fuel Powder Conversion Plant Filtrate and its Thermal Decomposition Characteristics (핵연료분말 제조공정에서 발생된 여액으로부터 우라늄 회수 및 회수된 우라늄 화합물의 열분해 특성)

  • Jeong, Kyung-Chai;Jeong, Ji-Young;Kim, Byung-Ho;Kim, Tae-Joon;Choi, Jong-Hyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.204-209
    • /
    • 2002
  • In this study, $UO_4{\cdot}2NH_4F$, the precipitates which has low solubility, was obtained by chemical precipitation method to recover and reuse the trace uranium from the liquid waste producing in AUC process and for this compound it was characterized by means of chemical analysis, TG-DTA, XRD and FT-IR analyses. This compound was analyzed as $UO_4{\cdot}2NH_4F$ and shape of this precipitate was hexagonal type, having the size of 2∼3 ${\mu}m$. Also, the intermediates were obtained as $UO_4F,\;UO_4,\;UO_3,\;and\;U_3O_8$ by the thermal decomposition over the temperature of 220, 310, 515 and 640$^{\circ}C$, respectively. It is concluded that under the condition of a constant heating rate of 5$^{\circ}C$/min in air atmosphere range of between room temperature and 800$^{\circ}C$, thermal decomposition reaction mechanism of $UO_4{\cdot}2NH_4F$ is as follow; $UO_4{\cdot}2NH_4F{\rightarrow}UO_4F{\rightarrow}UO_4{\rightarrow}UO_3{\rightarrow}U_3O_8$.

Synthesis and Characterization of Interfacial Properties of a Cationic Surfactant Having Three Hydroxyl Groups (세 개의 히드록실기를 가진 양이온 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Byung Min;Kim, Ji-Hyun;Kim, Sung Soo;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • In this study, a cationic surfactant BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate) having two lauryl and three hydroxyl groups was synthesized by the reaction of n-dodecyl glycidyl ether and 2-aminoethanol followed by the quarternization with dimethyl sulfate. The structure of the product was elucidated by $^{1}H-NMR$ and FT-IR. The CMC (critical micelle concentration) and surface tension of BHMAS at CMC condition were found to be $9.12\;{\times}\;10^{-4}$ mol/L and 28.71 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer indicated that a relatively long time was required to saturate the interface between air and aqueous surfactant solution. The interfacial tension measured between 1 wt% surfactant solution and n-decane reached an equilibrium value of 0.045 mN/m in 5 min. The adsorption capacity of the synthesized surfactant was observed to be excellent, which suggests that the surfactant can be used as a softening agent during a laundry process.

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF

Investigation of Spherical LiMn2O4 Cathode Materials by Spray-drying with Different Electrochemical Behaviors at High Rate (분무건조법으로 제조한 구형 스피넬계 LiMn2O4 양극소재의 합성 조건에 따른 고출력 거동에 대한 연구)

  • Song, Jun Ho;Cho, Woosuk;Kim, Young Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.50-56
    • /
    • 2016
  • Spherical lithium manganese oxide spinel, $Li_{1.10}Mn_{1.86}Al_{0.02}Mg_{0.02}O_4$ was prepared by wet-milling, spray-drying, and sintering process. In the spray-drying process, solid content in slurry was varied from 20 to 30 wt%. In the sintering process, the precursors have been sintered under air or $O_2$ atmosphere. While the as-prepared samples exhibit excellent electrochemical properties at room temperature, the discharge voltage profiles at 5.0C are very different one from another. The origin for the difference especially at initial state of discharge is oxygen defect. The sample prepared in air has larger capacity related to the plateau at 3.3 V (vs. $Li/Li^+$) which is caused by the oxygen defects than the one prepared in $O_2$. The difference of discharge voltage profiles especially at the final state of discharge comes from different diffusion rate of $Li^+$ ions. The sample prepared from 30 wt% solid content of slurry shows twice higher diffusion rate than the samples prepared from 20 wt% solid content, which is attributed to better compactness between primary particles for the sample prepared from 30wt % solid content than the one prepared by 20 wt%.

Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant (글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lim, JongChoo;Lee, Seul;Kim, ByeongJo;Lee, JongGi;Choi, KyuYong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-383
    • /
    • 2011
  • The CMCs of LA and LA3 nonionic surfactants obtained from the reaction between glycidol and lauryl alcohol were found to be $0.97{\times}10^{-3}mol/L$ and $1.02{\times}10^{-3}mol/L$ respectively and the surface tensions for 1 wt% surfactant were 26.99 and 27.48 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer showed that the adsorption rate of surfactant molecules at the interface between the air and the surfactant solution was found to be relatively fast in both surfactant systems, presumably due to the high mobility of surfactant molecules. The contact angles of LA and LA3 nonionic surfactants were 27.8 and $20.9^{\circ}$ respectively and the dynamic interfacial tension measurement by a spinning drop tensiometer showed that interfacial tensions at equilibrium condition in both systems were almost the same. Also both surfactant systems reached equilibrium in 2~3 min. Both surfactant solutions showed high stability when evaluated by conductometric method and the LA nonionic surfactant system provided the higher foam stability than the LA3 nonionic surfactant system. The phase behavior experiments showed a lower phase or oil in water (O/W) microemulsion in equilibrium with an excess oil phase at all temperatures studied. No three-phase region was observed including a middle-phase microemulsion or a lamellar liquid crystalline phase.

Antibacterial and Antiviral Activities of Multi-coating Polyester Textiles (다중 코팅 폴리에스터 섬유 여재의 항균 및 항바이러스 특성)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.444-450
    • /
    • 2022
  • The effect of coated polyester (PET) textiles with metal oxide, chitosan, and copper ion on the antibacterial and antiviral activities was evaluated to investigate the applicability of multi-coated PET textiles as antiviral materials. Compared to coated PETs with a single agent, multi-coated PETs reduced the loading amount of coating materials as well as the contact time with bacteria for a bacterial cell number of < 10 CFU/mL, which was not detectable with the naked eyes. Metal oxides generate reactive oxygen species (ROS) such as free radicals by a catalytic reaction, and copper ions can promote contact killing by the generation of ROS. Chitosan not only enhanced antibacterial activities due to amine groups, but enabled it to be a template to load copper ions. We observed that multi-coated PET textiles have both antibacterial activities for E. coli and S. aureus and antiviral efficiency of more than 99.9% for influenza A (H1N1) and SARS-CoV-2. The multi-coated PET textiles could also be prepared via a roll-to-roll coating process, which showed high antiviral efficacy, demonstrating its potential use in air filtration and antiviral products such as masks and personal protective equipment.