• Title/Summary/Keyword: 공기포집

Search Result 141, Processing Time 0.03 seconds

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

An experimental study on the influence of undular bore on the hydraulic stability at Shinwol rainwater storage and drainage system (불규칙 단파가 신월저류배수시설의 수리적 안정성에 미치는 영향에 대한 실험 연구)

  • Oh, Jun Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.313-323
    • /
    • 2019
  • Deep Tunnel system is a large-scale urban flood control facility installed underground in order to reinforce the lack of drainage systems in developed cities. In a structure like a deep tunnel system, the undular bore generated in the downstream causes a problem in the hydraulic stability of the tunnel. In this study, to investigate the influence of the undular bore on the hydraulic stability at the "Shinwol rainwater storage and drainage system", under construction for the first time in the country, a hydraulic model experiment was conducted on various flooding inflow scenarios. As a result of the hydraulic model experiment carried out in this study, the undular bore generated downstream is trapped in the pipe while moving to upstream, pushes the compressed air. It is judged that overflow occurred by choking the vertical drop shaft in the process when this compressed air is being exhaust through the upstream vertical drop shaft and blocking flood inflow. In addition, the analysis of velocity of undular bore shows that the undular bore transfers energy, and at this time, the pressure rose in the pipe and the velocity increment occurred of the undular bore. Further studies are needed to predict the size and velocity of undular bore, which plays an important role in the hydraulic stability of the tunnel in the deep tunnel system.

Estimation of Uranium Particle Concentration in the Korean Peninsula Caused by North Korea's Uranium Enrichment Facility (북한 우라늄 농축시설로 인한 한반도에서의 공기중 우라늄 입자 농도 예측)

  • Kwak, Sung-Woo;Kang, Han-Byeol;Shin, Jung-Ki;Lee, Junghyun
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • North Korea's uranium enrichment facility is a matter of international concern. It is of particular alarming to South Korea with regard to the security and safety of the country. This situation requires continuous monitoring of the DPRK and emergency preparedness on the part of the ROK. To assess the detectability of an undeclared uranium enrichment plant in North Korea, uranium concentrations in the air at both a short and a long distance from the enrichment facility were estimated. $UF_6$ source terms were determined by using existing information on North Korean facility and data from the operation experience of enrichment plants from other countries. Using the calculated source terms, two atmospheric dispersion models (Gaussian Plume Model and HYSPLIT models) and meteorological data were used to estimate the uranium particle concentrations from the Yongbyon enrichment facility. A maximum uranium concentration and its location are dependent upon the meteorological conditions and the height of the UF6 release point. This study showed that the maximum uranium concentration around the enrichment facility was about $1.0{\times}10^{-7}g{\cdot}m^{-3}$. The location of the maximum concentration was within about 0.4 km of the facility. It has been assumed that the uranium sample of about a few micrograms (${\mu}g$) could be obtained; and that few micrograms of uranium can be easily measured with current measurement instruments. On the contrary, a uranium concentration at a distance of more than 100 kilometers from the enrichment facility was estimated to be about $1.0{\times}10^{-13}{\sim}1.0{\times}10^{-15}g{\cdot}m^{-3}$, which is less than back-ground level. Therefore, based on the results of our paper, an air sample taken within the vicinity of the Yongbyon enrichment facility could be used to determine as to whether or not North Korea is carrying out an undeclared nuclear program. However, the air samples taken at a longer distance of a few hundred kilometers would prove difficult in detecting a clandestine nuclear activities.

Distribution and Characteristics of Culturable Airborne Microorganisms in Composting Facility and Landfill (퇴비화 시설과 매립장에서 배양 가능한 공기중 미생물의 분포 및 특성)

  • Lee, Bo-Ra;Cha, Min-Ju;Jeong, Choon-Soo;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Bioaerosols generated from composting facilities and landfills may create health risks for workers and nearby residents. To determine the levels of culturable airborne bacteria and fungi in bioaerosols, samples were seasonally collected at a composting facility and a landfill in Ulsan, Korea with an impaction-type sampler. Concentrations of heterotrophic bacteria averaged (in $MPN/m^3$) $6.5{\times}10^3$ (range $1.5{\times}10^2-1.5{\times}10^4$) in the composting facility and $3.9{\times}10^3$ (range $6.0{\times}10^1-9.3{\times}10^3$) at the entrance of the facility. These concentrations were 460 and 280 times higher than those of reference sites. Coliform bacteria were detected both inside and entrance of the facility. On the landfill, heterotrophic bacterial concentrations averaged (in $MPN/m^3$) $4.9{\times}10^2$ (range $1.7{\times}10^2-1.0{\times}10^3$), while they averaged $3.7{\times}10^2$ (range $4.8{\times}10^1-1.3{\times}10^3$) at the parking lot of the landfill. These concentrations were 35 and 26 times higher than those of reference sites. When we isolated and tentatively identified heterotrophic bacteria, Pseudomonas luteola was the most dominant species in bioaerosols from the composting facility, whereas the most abundant one in reference samples was Micrococcus sp. Average concentrations of airborne fungi were measured between $4.8{\times}10^2$ and $7.9{\times}10^2\;MPN/m^3$ depending on sites, which were 2.1-3.4 times higher compared to those of reference sites. While Cladosporium, Alternaria, and Penicillium were commonly identified fungal genera, genus Aspergillus was identified only in bioaerosols from the composting facility.

Characteristics of CaCO3 Sorbent Particles for the In-furnace Desulfurization (로 내 탈황을 위한 CaCO3 흡착제 입자의 분위기 기체와 체류 시간의 변화에 따른 특성)

  • Lee, Kang-Soo;Jung, Jae-Hee;Keel, Sang-In;Lee, Hyung-Keun;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • The in-furnace desulfurization technique is applied to the $O_2/CO_2$ combustion system for the carbon capture and storage (CCS) process because this combustion system does not need an additional chamber for the desulfurization. $CaCO_3$ sorbent particles, which have a wide range in size from a few nanometers to several tens of micrometers, are used for this process. In this study, an experimental system which can simulate the $O_2/CO_2$ combustion system was developed. $CaCO_3$ sorbent particles were exposed to the high temperature reactor at $1200^{\circ}C$ with various residence times (0.33-1.46 s) in air and $CO_2$ atmospheric conditions, respectively. The sorbent particles were then sampled at the inlet and outlet of the reactor and analyzed qualitatively/quantitatively using SMPS, XRD, TGA, and SEM. The results showed that the residence time and atmospheric condition in a high temperature reactor can affect the characteristics of the $CaCO_3$ sorbent particles used in the in-furnace desulfurization technique, such as the calcination rate and reaction mechanism.

The $CO_2$ Recovering Recipe used Oxy Combustion with the Submerged Natural Gas Burner (천연가스 수중연소기(SMV)에서 순산소연소를 활용한 $CO_2$ 회수방안)

  • Sohn, Whaseung;Kim, Hoyeon;Ha, Jongmann;Kim, Joonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.157-157
    • /
    • 2010
  • 우리나라는 기후변화협약에 대응하기 위한 교토의정서를 비준한 국가로서, 아직 온실가스의 의무감축 대상 국가는 아니다. 그러나 2012년부터 시작될 교토의정서 2차 공약기간 중에 브라질, 중국 및 인도와 같이 2차 의무감축대상이 가장 유력시 되는 국가로 지목되고 있으므로, 이러한 변화에 능동적으로 대처할 수 있는 기술적, 사회적, 정책적 방안이 신속히 마련될 필요가 있다. CCS(carbon capture & storage)란 화석연료로 부터 연소시 대기 중으로 배출되는 온실가스($CO_2$)를 포집하여 재생 또는 지중, 해양에 저장하는 기술로서 국가녹색성장 핵심기술중의 하나로 분류되며, 대료적인 $CO_2$ 발생대상인 석탄화력발전소로 부터 $CO_2$ 회수방안, 회수, 처리관련 연구를 포함하여 국내외 적으로 활발한 연구가 이루어 지고 있다. 순산소 연소기술을 통한 $CO_2$ 회수, 처리기술은 연료(천연가스, 석탄, 석유)의 산화제를 공기대신 순도 95% 이상의 고농도 산소를 이용하여 순산소연소를 하며, 이때 발생하는 배가스의 대부분은 $CO_2$와 수증기로 구성되어 있다. 발생된 배가스의 약 70~80%를 다시 연소실로 재순환시켜 연소기의 열적 특성에 적절한 연소가 가능하도록 최적화함과 동시에 배가스의 $CO_2$ 농도를 80% 이상으로 농축시켜 회수를 용이하게 하며, 특히 공해물질은 NOx 발생량을 10ppM 이하로 줄일 수 있다. 천연가스가 생산되는 LNG기지에서 LNG를 기화시키기 위하여 해수식 기화기(ORV : Open Rack Vaporizer와 수중연소식 기화기(SMV ; Submerged Combustion Vaporizer)를 사용하고 있으며, 특히 SMV는 버너를 이용하여 $-162^{\circ}C$ LNG를 $10^{\circ}C$의 LN로 기화시키는 설비로서 이때 연소시 $CO_2$를 상당량 발생시킨다. 본 논문에서는 SMV에서 순산소 연소방식을 적용하여 연료인 천연가스를 연소시키고, 이때 발생되는 $CO_2$와 수분이 주 성분인 배가스를 연소기에 재순환시켜, 연소실내 고온문제를 해결하며, 최종적으로 배가스중 $CO_2$$-162^{\circ}C$의 LNG 냉열을 이용하여 고순도의 액체 $CO_2$로 액화시키므로서 $CO_2$의 회수, 처리문제를 해결하는 방식을 소개하고자 한다. 이러한 방식은 천연가스에서 발생되는 $CO_2$ 회수를 LNG 냉열을 활용하므로서 폐열을 활용하는 에너지 효율적인 문제와 사용가능한 고순도 $CO_2$로 회수하므로서 환경적인 문제를 처리하는 기술이라 할 수 있다.

  • PDF

A Study on Removal of Abietic Acid Using Plasma (플라스마를 이용한 Abietic Acid의 제거에 관한 연구)

  • Kim, Ga-Young;Kim, Da-Seul;Kim, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.788-794
    • /
    • 2020
  • This study was measured and analyzed from January to November 2019 to confirm the effect that Abietic acid, an asthma-causing substance, which can be exposed to workers in the electronics industry, is removed by plasma treatment. The experiment was carried out using a solder wire and natural rosin. Air at temperatures of 250℃, 300℃, and 350℃ was collected with a glass fiber filter paper using an air sampler for 10 minutes at a flow rate of 2ℓ/min. An analysis of the collected samples was performed by pretreatment with methyl alcohol and quantitative analysis by high performance liquid chromatography (HPLC). This procedure confirmed that abietic acid was generated in both natural rosin and solder wires, and the quantum of abietic acid increased as the treatment temperature increased. The amount of abietic acid was higher in natural rosin than solder wire. As a result of plasma treatment, a removal efficiency of about 92% or more was confirmed in natural rosin. A peak of abietic acid was not detected in the solder wire. Therefore, a removal efficiency of 100% was confirmed. This study, confirmed that abietic acid, an asthma-trigger can be generated in solder wire and natural rosin, and can be removed by plasma treatment.

A Study on Organic Solvent Measurement Using Diffusive Sampler (확산포집기를 이용한 공기 중 유기용제 포집에 관한 연구)

  • Park, Mi Jin;Yoon, Chung Sik;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.208-223
    • /
    • 1994
  • The purpose of this study was to evaluate the efficiency of diffusive(or passive) sampler in measuring airbone organic solvents. Diffusive samplers are generally simple in construction and do not require power for operation. The efficiency of the diffusive samplers has not sufficiently been investigated in Korea. Three types of samplers were studied in this study. The sampling and analytical results by passive samplers were compared with results by charcoal tube method recommended by NIOSH(National Institute for Occupational Safty and Health). The following characteristics are identified and studied as critical to the performance passive monitors; recovery, reverse diffusion, storage stability, accuracy and precision, face velocity and humidity, n-Hexane, TCE(trichloroethylene) and toluene were used as test vapors. A dynamic vapor exposure system consisting of organic vapor generator and sampling chamber for evaluating diffusive samplers are made. The results of the study are summarized as follows. 1. NIOSH recommands that the overall accuracy of a sampling method in the range of 0.5 to 2.0 times the occupational health standard should be ${\pm}25$ percent for 95 percent confidence level. Among three types of diffusive samplers, sampler A has permeation membrane and samplers Band C have diffusive areas, samplers A and B met the criterion that overall accuracy for 95% confidence level of the samplers were within ${\pm}25$ percent of the reference value. Sampler C had overall accuracy ${\pm}9.6%$ and ${\pm}11.8%$ in hexane and TCE, respectively. The concentration of toluene was overestimated in sampler C with overall accuracy of ${\pm}43.9%$. 2. The desorption efficiencies of diffusive samplers were 96-107%. 3. There was no significant sampe loss during four weeks of storage both with and without refrigeration. 4. There was no significant reverse diffusion, when the samplers were exposure to clean air for 2 hours after sampling for 2 hours at the level of 2 TLY. 5. In case of 8 hours sampling, relative differences(RD) of concentrations between charcoal tube method and diffusive method were 15-39%, 13-46%, and 4-35% for sampler A, B and C, respectively. The performance was poor in 8 hours sampling for multiple substance monitors. 6. At high velocity(100 cm/sec), samplers B and C overestimated the concentrations of organic vapors, and sampler A with permeation membrance gave better results. 7. At 80% relative humidity, samplers showed no siginificant effect. Low humidity also did not affect the diffusive samplers.

  • PDF

Study on Destruction of Chlorinated Organic Compounds in a Two Stage Molten Carbonate Oxidation System (2단 용융탄산염산화시스템에서 염소유기화합물 분해에 관한 연구)

  • Eun, Hee-Chul;Yang, Hee-Chul;Cho, Yung-Zun;Lee, Han-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1148-1152
    • /
    • 2008
  • Molten carbonate oxidation (MCO) is one of the promising alternative technologies for the treatment of the chlorinated organic compounds because it is capable of trapping chlorine during a destruction of them. In this study, destructions of chlorinated organic compounds ($C_6H_5Cl$, $C_2HCl_3$ and $CCl_4$) and an insulated oil containing PCBs were performed by using the two stage molten carbonate oxidation system. MCO reactor temperature largely affected the destruction of the chlorinated organic compounds. Destruction of the chlorinated organics very efficient in the primary MCO reactor however a significant amount of CO was emitted from the MCO system. This CO emission was gradually decreased by an increase in the primary reactor temperature and oxidizing air feed rate. The HCl emission from the MCO system was below 7 ppm regardless of tested conditions. The chlorine collection efficiencies were in the range of 99.95-99.99%. The destruction of PCBs in the insulated oil was efficient at a temperature above $900^{\circ}C$ and overall destruction efficiency of them was determined as over 99.9999%.