• Title/Summary/Keyword: 공기주입형 재킷

Search Result 3, Processing Time 0.017 seconds

Comparisons of Thermal Insulations between on Air-Cell Pack Embedded Jacket and Down Jackets (공기주입형 의복의 보온력 측정 및 다운재킷의 보온력과의 비교)

  • Kim, Yung-Bin;Jang, Won;Kim, Kirim;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • This study investigated the thermal insulation of an air-cell pack embedded jacket and down jackets to understand the potential of air-cell pack as a filler for winter outdoor wear. A thermal manikin measured the thermal insulation of the following jackets: HD (heavy down jacket, total weight (Tw) 750g, goose down weight (Dw) 350g), LD (light down jacket, Tw 560g, Dw 140g), AF (air-cell pack embedded jacket, Tw 490g, trunk goose down in LD was replaced to air cell), F (film jacket, Tw 469g, but removed the air in the air-cell pack from the AF), and Control (control jacket, Tw 438g, removed the air-cell pack film from the F). Thermal insulations of each experimental condition were measured in a static standing posture. Total thermal insulations (IT) were 1.29clo (HD), 1.23clo (LD), 1.16clo (AF), 1.20clo (F), and 1.08clo (Control). Body regional thermal insulation was higher in the chest and back than in the abdomen and hip in all conditions. The results suggest that an economical and versatile outdoor jacket with superior thermal insulation will be feasible if the air volume is properly controlled in air-cell pack embedded jackets in consideration of regional different distribution and used in combination with film and down.

Air-containing Multi-functional Jacket Design Utilizing Modular Systems - Focused on Cushioning, Heat Insulation and Portability - (모듈러 시스템을 이용한 공기주입형 다기능 재킷 디자인 - 쿠션, 보온, 휴대 기능을 중심으로 -)

  • Son, Sue-Min
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.2
    • /
    • pp.222-237
    • /
    • 2012
  • Air-containing fashion, which can offer diverse functions through the inflow and outflow of air, is highly relevant in today's mobile society, where people are experiencing a wider range of environments. This study attempts to suggest the possibility of air-containing multi-functional fashion that could continuously be utilized by developing a design for an air-containing jacket using modular systems. In this research, the modular systems in architecture and furniture design were referenced through a review of the literature for the purpose of establishing modular systems in fashion. Functions relevant to the mobility of today's society are derived from the results of advanced research and applied to the design of modules of the jacket. The modules are integrated through the modular systems. The folding and unfolding structure in architecture and furniture is applied as a folding system in fashion, the vertical accumulation structure as a layering system, and the horizontal integration structure as a combining system, and in addition, the containing system has emerged in fashion. Each module is designed to fulfill certain functions, such as cushioning, heat insulation, and portability. The folding system is utilized in designing the cushion module to support the neck and back of a wearer by making its hood and hem fold in the back. The application of a layering system was suggested by making the vest, combined with the neck cushion and back cushion via the combining system, layered with its insulation module. By applying the combining system, the hood that includes the neck cushion, the skirt that includes the back cushion, the body that includes the insulation module, and the sleeves can be connected and separated by a zipper. The applicability of this concept was proven by applying a developed design to an actual item.

Comparison and Evaluation of Clothing Insulation of Newly-Developed Air-Filled Baffle Jackets and Down Padded Jackets (새롭게 개발된 겨울용 공기주입형 배플 패딩 재킷과 기존 방한 패딩 재킷들의 보온력 비교 평가)

  • Kwon, JuYoun;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The purpose of the present study was to evaluate the thermal insulation of air-filled winter jackets according to the amount of air-filler using a thermal manikin. The insulation of these jackets' was compared to a down padded jacket with an identical design and size. The amounts of air-filler were 100% (26,219 cm3), 70% (18,645 cm3), 50% (13,110 cm3), and 0% (0 cm3). The results showed that a clothing insulation (Icl) of 0%, 50%, 70%, and 100% air, and 100% down jackets was 0.208, 0.243, 0.207, 0.176, and 0.315 clo, respectively. In addition, the down jacket with waisttaped had a clothing insulation of 0.369 clo. However, the highest value of clothing insulation per clothing weight was the 50% air-filled jacket in all conditions. In terms of regional power consumption of the thermal manikin, the down jacket consumed less power for the shoulder and chest than the air-filled jackets. In conclusion, in order to maximize the thermal insulation of air-filled jackets, an optimal amount of air-filler, that is, an amount which does not compromise (break) the layer of inner air between the surface of manikin and the lining of the jacket, should be explored. Further studies on lining materials, end-closed design, and changes in thermal insulation under the conditions of strong wind or heavy snow are recommended.