• Title/Summary/Keyword: 공기주입량

Search Result 134, Processing Time 0.033 seconds

Oxygen Transfer System in Biological Fluidised Bed Using the Deep Shaft as Aeration Device (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 폐수처리(廢水處理)에 있어서의 심층(深層) 폭기장치(曝氣裝置)에 의한 산소전달(酸素傳達) 시스템)

  • Kim, Hwan Gi;Ahn, Song Yeob;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • This paper is concentrated on the development of oxygen transfer system by U-tube deep shaft in biological fluidised bed process. The depth of the shaft is 32 m, it is composed of downcomer and riser. Not only flow pattern and oxygen transfer in the deep shaft but also oxygen limitation in biofilm and oxygen utilization in biological fluidised bed are investigated. In this investigation, driving force for liquid circulation in the deep shaft is affected by air injection depth and gas hold-up in downcomer. Flow pattern of the deep shaft is revealed to plug flow. When flow velocity in the deep shaft is maintained to 0.52 m/sec, $K_La$ value is peak at 25~30 m depth in riser. The efficiency of dissolved oxygen supply which passed from the deep shaft to biological fluidised bed is estimated to 56~81 % in the organic wastewater treatment using the deep shaft and when dissolved oxygen concentration is 9.2 mg/l and over, limiting factors of flux and substrate within biofilm are organic materials. Terefore, organic loadings could be increase without decreasing of BOD removal efficiency.

  • PDF

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

Numerical Study on the Thermal NOx Reduction by Addition of Moisture in LNG Flame (가습 공기의 LNG 화염 Thermal NOx 저감의 수치 해석적 연구)

  • Shin, Mi-Soo;Park, Mi-Sun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.837-842
    • /
    • 2014
  • A computer program is developed for the prediction of NO generation by the addition of water moisture and water electrolysis gas in LNG-fired turbulent reacting flow. This study is the first part to deal with the moisture effect on NO generation. In this study, parametric investigation has been made in order to see the reduction of thermal NO as a function of amount of moisture content in a LNG-fired flame together with the swirl and radiation effect. First of all, calculation results show that the flame separation together with the NO concentration separation are observed by the typical flow separation due to strong swirl flow. With a fixed amount of air, the increased amount of water moisture from 0 to 10% by 2% interval shows the decrease of NO concentration and flame temperature at exit are from $973^{\circ}C$ and 139 ppm to $852^{\circ}C$ and 71 ppm. The radiation effects on the generation on NO appears more dominant than swirl strength over the range employed in this study. However, for the strong swirl flow employed in this study, the flow separation cause the relatively high NO concentration observed near exit after peak concentration in the front side of the combustor.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.

Removal of Ammonia-N by using the Immobilized Nitrifier Consortium in Aquaculture System (양어장에서 고정화된 질화세균군을 이용한 암모니아 질소 제거)

  • SUH Kuen-Hack;KIM Yong-Ha;AHN Kab-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.868-873
    • /
    • 1997
  • Nitrifier consortium entrapped in Ca and Ba-alginate beads were packed into two reactors and studied for removing ammonia-nitrogen in aquaculture system. The ammonia-nitrogen concentration of the influent was continually kept about 2 ppm. At the hydraulic residence time of 0.6 hours, ammonia-nitrogen removal amount of two reactors was about 52.6 and 51.0 g $NH_3-N/m^3/day$, respectively. The ability of adjusting to an impulsive leading which was happened according to variations of HRT was better at Ba-alginate reactor, but its discrepancy was not so large. At the respect of removing ammonium-nitrogen, two reactors showed the similar ability of treating recirculating water.

  • PDF

Plasma Cosmetic Container Suitability (플라즈마 화장품 용기 적합성)

  • Ha Hyeon Jo;You-Yeon Chun;Hyojin Heo;Sang Hun Lee;Lei Lei;Ye Ji Kim;Byeong-Mun Kwak;Mi-Gi Lee;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • For plasma cosmetics, it is important to ensure the long-term stability of plasma in the formulation. This study examined the suitability of containers for efficient plasma cosmetics development. By varying the surface area covered by the plasma, 4 cm2, 25 cm2, 75 cm2, and 175 cm2 containers were injected with cosmetic plasma, and the amount of nitric oxide (NO), the main active species of nitrogen plasma, was analyzed. As a result, the surface area and stability exposed to plasma tended to be inversely proportional, and it was most effective in a 4 cm2 container. Furthermore, 25 mm, 40 mm, and 50 mm vials were treated with plasma, which resulted in relative long-term stability of NO at 25 mm, a smaller surface area of the container exposed to air. Water mist and stratified mist were selected as cosmetic formulations, and NO plasma was injected into the water layer to observe the changes in formulation properties and the state of the injected NO plasma. In both formulations, the amount of NO plasma injected was about 1.5 times higher in the water phase mist than in the stratified mist, and the stratified mist gradually decreased with time and was found to disappear after 3 weeks. The stability of the nitrogen plasma was studied at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃, 50 ℃). As a result, it was found that the water mist did not affect the stability, but the stratified mist observed a color change in the oil phase layer. Overall, this study demonstrates the container suitability of nitrogen plasma and suggests the importance of ensuring the stability of injected nitrogen plasma in cosmetic formulations.

Thickening of Activated Sludge Using Low Pressure Flotation Pilot System (파일롯 규모의 저압형 부상장치를 이용한 하수슬러지 농축에 관한 연구)

  • Kim, Ji Tae;Oh, Joon Taek;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.172-177
    • /
    • 2014
  • Low pressure air flotation (LAF) pilot plant for sludge thickening was installed in Chung Nam N.S. municipal waste water treatment plant to verify its application possibility. Effects of operating conditions such as coagulant dosages and microbubble water ratio on thickening of the mixed sludge were examined. Microbubbles which were generated in the chamber of $1.5kgf/cm^2$ by high speed collision method with foaming agent were used to float sludge. Solid loading of $30kg/m^2/hr$, solid contents in thickened sludge of 60,300 mg/L and SS removal efficiency of 99% were obtained through long period operating LAF in conditions of mixed sludge concentration of 14,400 mg/L, coagulant dosage of 27.6 mg/L, foaming agent addition of 4.0 mg/L and microbubble water injection ratio of 9.7%.

Au-ZnO 나노복합체의 국부화된 플라즈몬 효과에 따른 유기발광소자의 효율 향상

  • Lee, Yong-Hun;Kim, Dae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.219-219
    • /
    • 2016
  • 유기발광소자는 저전력, 빠른 응답속도, 고휘도 및 자체발광 등의 장점들 때문에 고체 광원과 플렉서블 디스플레이로 연구가 진행되고 있다. 유기발광소자는 유기 발광층을 인광물질로 사용 함으로서 100 % 내부양자 효율을 이루고 있지만 공기와 유리기판의 계면과 유리 기판과 ITO 계면에서 발생하는 내부 전반사 효과와 유기물과 ITO 기판 사이에서 발생하는 웨이브 가이드 효과 등으로 인해 발광량의 약 20 %만을 외부로 추출 할 수 있다. 따라서 유기발광소자의 광 추출 효과를 증가시키기 위해서 소자외부에 아웃커플링 필름 또는 마이크로렌즈 어레이 필름을 부착시키는 방법, 금속 나노 입자를 유기발광소자 내에 삽입하여 표면 플라즈몬 효과로 인한 광추출 효율을 높이는 방법 등이 제시되고 있다. 본 연구에서는 Au-ZnO 나노복합체를 간단한 졸겔법을 이용하여 양극 버퍼층으로 사용하여 그에 따른 계면, 전기적 및 광학적 특성을 분석하였다. Au-ZnO 나노복합체를 포함한 tris(8-hydroxyquinolinato) aluminium (Alq3) 발광층에서 ZnO를 포함한 Alq3 발광층보다 엑시톤 수명이 빠르게 감소하는 것을 시간 관련 단광자 계산(Time-Correlated Single Photon Counting) 측정을 통해서 알 수 있었다. 이러한 결과는 Au 금속 나노입자의 플라즈몬 흡수 파장과 Alq3 발광층에서 생성되는 발광 파장이 겹쳐서 효과적인 공명 에너지 전달효과로 인해 Alq3 발광층의 발광성질이 향상된 것을 의미한다. Au-ZnO 나노복합체와 ZnO 나노입자를 가지는 유기발광소자의 전류 효율은 50 mA/cm2 에서 각각 2.27와 1.83 cd/A 가지는 것으로 확인 되었다. 또한 Au-ZnO 나노복합체와 ZnO 나노입자를 사용한 유기발광소자의 전압-전류밀도가 유사한 것을 확인 할 수 있는데 이는 Au 금속 나노입자가 ZnO 나노입자의 정공 주입능력을 저하시키지 않는 것을 의미한다.

  • PDF

Removal of Ammonium-Nitrogen {$NH_4^+$ -N) Using Immobilized Nitrifier Consortium in PVA(PolyvinylalcohoI) (PVA에 고정화된 Nitrifier Consortium을 이용한 암모니아성 질소의 제거)

  • 서재관;서근학;김성구
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 1999
  • The immobilization of nitrifier consortium was carried out for the application to recirculating aquaculture system(RAS). The abilities of $NH_4^+$-N removal by immobilized nitrifier consortia prepared with boric acid treated, ethanol treated, ad freezing-thawing treated PVA beads at the concentration 15% were examined. To identify the possibility of applying the beads in the fluidized bed reactor, characteristics of beads were evaluated. The suitable bead was boric acid treated beads which had highest ammonia removal rate of 16.09 g/$m^3$/day. It took 12 days for nitrifier consortium immobilized beads to be stable for the removal of $NH_4^+$-N. Life spans of the beads were more than three months with aggressive aeration in the fluidized ed reactor when nitrifier consortia immobilized in PVA beads were used. In order to apply the nitrifier consortium immobilized beads to aquaculture facility, the continuous reactor was used for 49 days with synthetic aquacultural water containing 2 mg/L ammonia. The highest ammonia removal rate of 31.87 g/$m^3$/day was observed when hydraulic residence time was 0.6 hour(36min.).

  • PDF

Production of Gomisin J from Suspension Cultured Cells of Schisandra chinensis Baillon in Airlift-type Bioreactor (생물반응기를 이용한 오미자의 현탁배양세포로부터 Gomisin J의 생산)

  • Hwang, Sung-Jin;Pyo, Byoung-Sik;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.478-482
    • /
    • 2004
  • Suspension culture of Schisandra chinensis for production of gomisin J was perfomed in bioreactor. The inoculum size and initial sucrose concentration had significant effect on the cell growth and gomisin J accumulation. The maximum dry cell weight $(DCW;\;43.5\;g/{\ell})$ and gomisin J content $(0.71\;{\times}\;10^{-3}\;{\mu}g/g\;DCW)$ were obtained at inoculum size of 100 g fresh cell weight (FCW) per liter and MB5 medium containing 6% sucrose after 8 weeks of culture. The effect of oxygen supply on the cell growth and gomisin J accumulation was also investigated in an airlift-type bioreactor. The optimal cell growth and gomisin J content was obtained under 0.5 vvm. The productivity of gomisin J was 0.7 fold in bioreactor culture lower than that obtained in a flask cultivation.