• Title/Summary/Keyword: 공기유로

Search Result 109, Processing Time 0.02 seconds

액체금속로 피동 원자로용기냉각계통의 특성 분석

  • 위명환;심윤섭
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.374-378
    • /
    • 1996
  • 피동 원자로용기 냉각계통은 원자로 용기를 둘러싸고 있는 격납공기 외부가 공기에 자연순환에 의해 냉각하는 방식으로 공기 흐름 구동력은 원자로용기의 외부 유로의 공기와 주변 대기와의 밀도 차이에 의하여 피동적으로 형성됨에 따라 높은 작동 신뢰성이 보장된 개념으로서 본 연구에서는 공기입구 위치에 따른 영향 및 격납용기와 유로 벽면간의 복사 효과 까지를 고려 할 수 있도록 해석 모형을 개선 시키고 개선된 모형을 이용하여 계통을 구성하는 설계인자들이 계통의 성능 및 크기에 미치는 영향등을 분석하였다. 이러한 분석을 통하여 공기의 입구 위치가 계통의 열제거용량에 미치는 영향, 상향공기 유로에서의 복사 열전달 고려 유무가 해석 결과에 미치는 영향 그리고 설계인자와 계통 성능간의 상관성을 밝혔다.

  • PDF

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

A Study on Coolant Mixing in Multirod Bundle Subchannels

  • Cha, Jong-Hee;Cho, Moon-Haeng
    • Nuclear Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1970
  • A study was conducted on the coolant mixing between water flowing in two adjacent subchannels. Measurements were made of the quantity of mass transferred between a larger rectangular channel and a smaller triangular channel in a 19-rod fuel bundle under the conditions of single phase flow and air-water two-phase flow. The results of the experiments showed that the low mixing rate appears in single phase flow, and high mixing rate was measured in air-water two-phase flow Mixing rate decreases with the increasing of air void fraction during the air-water flow. It seems that the high mixing rate in the air-water flow was caused due to adequate agitation of the chaotic air void.

  • PDF

A Study on Performance Characteristics of an Evaporative Heat Exchanger with Mini-channels (환경조절장치용 미세유로형 증발열교환기의 성능특성 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.247-253
    • /
    • 2011
  • An experimental study on performance characteristics of an evaporative heat exchanger based on tests for various operating conditions was presented. The heat exchanger maximizes the heat transfer rate per unit volume by applying mini-channels for both the air and coolant flow paths, and minimizes the amount of the coolant by using its latent heat of evaporation. The heat exchanger was manufactured by etching the flow paths, brazing the heat exchange plates, and welding the in/out ports of the media. The basic performance test has confirmed that the heat exchanger met its design requirements, and the results of the map test were analyzed to produce the performance characteristics quantitatively depending on the air inlet temperature, the air flow rate, and the coolant flow rate.

  • PDF

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Effects of Storage Condition on Degradation of Automotive Polymer Electrolyte Membrane Fuel Cells (보관상태가 자동차용 고분자전해질 연료전지의 성능 감소에 미치는 영향)

  • Cho, Eun-Ae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • Durability of automotive polymer electrolyte membrane fuel cell (PEMFC) strongly depends the startup/shutdown procedure. Formation of hydrogen/air boundary in the anode gas channel, so-called reverse current condition, particularly induces fast degradation of the cathode. Under the reverse current condition, high voltage is present at the cathode facing air in the anode gas channel and is a function of residual oxygen concentration in the gas channels, that increases with storage time and reaches 21% (air) eventually. In this study, effects of residual oxygen concentration in a PEMFC on degradation of the PEMFC.

RHRS에서의 공기흡입 방지에 관한 모의실험

  • 김상녕;장완호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.277-283
    • /
    • 1996
  • 원자력 발전소의 일차계통 부분충수운전시 잔열제거 계통 입구에서 자유수면 와동으로 인해 계통에 공기가 흡입될 수 있으며 이로 인해 계통이 상실되거나 계기에 오차가 유발되어 많은 안전상의 문제를 야기할 수 있다. 이러한 문제들을 해결할 수 있도록 흡입구의 구조를 개선하기 위해 다양한 구조에 대해 실험을 수행한 결과 깔때기 모양과 우회유로를 설치한 경우. 그리고 기존 T자형에 와동 방지판을 부착하는 것이 매우 효과적임이 밝혀졌다. 하지만 깔때기 모양이나 우회유로의 경우는 배관구조의 변경이 필요하여 따라서 기존 발전소나 신설 발전소에 적용시 문제점이 많으므로 필요시 붙이고 불필요하면 제거가능한 탈착식인 다공 와동 방지판을 최종적으로 선정하였다. 이 경우에 대하여 1/4 축소 실험장치로 실험한 결과 운전유량 영역에서 와동의 발생으로 인한 공기흡입과 펌프의 정지를 획기적으로 줄여주는 것으로 밝혀졌다.

  • PDF

ANALYSIS ON FLOW FIELDS IN AIRFLOW PATH OF CONCRETE DRY STORAGE CASK USING FLUENT CODE (FLUENT를 활용한 콘크리트 건식 저장용기 공기유로 내부 유동장 해석)

  • Kang, G.U.;Kim, H.J.;Cho, C.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 2016
  • This study investigated natural convection flow behavior in airflow path designed in concrete dry storage cask to remove the decay heat from spent nuclear fuels. Using FLUENT 16.1 code, thermal analysis for natural convection was carried out for three dimensional, 1/4 symmetry model under the normal condition that inlet ducts are 100% open. The maximum temperatures on other components except the fuel regions were satisfied with allowable values suggested in nuclear regulation-1536. From velocity and temperature distributions along the flow direction, the flow behavior in horizontal duct of air inlet and outlet duct, annular flow-path and bent pipe was delineated in detail. Theses results will be used as the theoretical background for the composing of airflow path for the designing of passive heat removal system by understanding the flow phenomena in airflow path.