• Title/Summary/Keyword: 공기유동해석

Search Result 547, Processing Time 0.03 seconds

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

Study on the Application of Casting Flow Simulation with Cut Cell Method by the Casting process (Cut Cell 방법을 활용한 공정별 주조유동해석 적용 연구)

  • Young-Sim Choi
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.302-309
    • /
    • 2023
  • In general, castings often have complex shapes and significant variations in thickness within a single product, making grid generation for simulations challenging. Casting flows involve multiphase flows, requiring the tracking of the boundary between air and molten metal. Additionally, considerable time is spent calculating pressure fields due to density differences in a numerical analysis. For these reasons, the Cartesian grid system has traditionally been used in mold filling simulations. However, orthogonal grids fail to represent shapes accurately, leading to a momentum loss caused by the stair-like grid patterns on curved and sloped surfaces. This can alter the flow of molten metals and result in incorrect casting process designs. To address this issue, simulations in the Cartesian grid system involve creating a large number of grids to represent shapes more accurately. Alternatively, the Cut Cell method can be applied to address the problems arising from the Cartesian grid system. In this study, analysis results based on the number of grid in the Cartesian grid system for a casting flow analysis were compared with results obtained using the Cut Cell method. Casting flow simulations of actual products during various casting processes were also conducted, and these results were analyzed with and without applying the Cut Cell method.

A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS (Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

A Study on the Numerical Analysis of Heat Sink for Radiant Heat of Automotive LED Head Lamp (자동차 LED Head Lamp의 방열을 위한 Heat Sink의 수치해석적 연구)

  • Choi, Byung-Hui;Kim, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4398-4404
    • /
    • 2012
  • This thesis was conducted a numerical analysis on the radiant heat performance according to factors of design of heat sink for cooling of the automotive LED head lamp. The heat sinks were designed with 5 different types to fit the limited internal space by formula based on an existing product (Type 1). Designed heat sinks of five types were analyzed by ANSYS CFD V12.1, and the analysis results were compared with the existing type. The results of simulation were analyzed temperature distribution and average temperature, air flow characteristic, heat flux etc. This thesis was researched on the correlation of the cooling performance according to the heat sink structure and the fin shape. Through numerical analysis, could be confirmed heat sink Type 2 as the best results.

Investigation of Emission Gas by using the Intake Manifold Gasket Blade (흡기 매니폴드 가스켓 블레이드 적용에 따른 배출가스 고찰)

  • Lee, Minjung;Kim, Taejung;Shin, Yunchan;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.54-61
    • /
    • 2018
  • Incomplete combustion in automotive engines is a major cause of harmful exhaust gases. In this study, to prevent incomplete combustion and reduce exhaust gas emissions, a gasket blade for increasing the air velocity was applied to the intake manifold, and the change in exhaust gas was investigated theoretically and experimentally. First, simulation analysis for flow according to the number and angle of the gasket blade was performed using a 3D flow analysis program. As an analysis result, the internal average velocity of the gasket blade was optimum at 6-blade with an angle of $30^{\circ}$. Based on the simulation results, experiments were conducted to verify the effects of the gasket blades on the exhaust gas in a non-load engine simulation system. As the engine speed was increased from 2000 to 4000 rpm, exhaust gases of HC, CO, and NOx decreased by 23.4%, 16.5%, and 3.8%, respectively, and the emission decreasing effect was reduced.

EFD-CFD workshop : CASE 3 CFD for transonic flow regime (EFD-CFD 비교워크샵 : CASE 3 천음속영역 유동해석에 대해서)

  • Lee, Yeongbin;Kim, Namgyun;Kim, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.252-258
    • /
    • 2017
  • This paper describes on introduction of CASE 3 for EFD-CFD comparison workshop which is incharged of aerodynamic subcommittee of The Korean Societry or Aeronautical and Space Science. In addition, the results of candidate for CASE 3 were compared with experimental result and computational result. Currently, for this case 3, there are eight candidates from company, university and research institute. According to comparison of their results, they are in accordance with experimental data and computational data.

Development of New Model(Dome Type) Cold Storage Facility Using 3-D CFD Simulation (3차원 CFD 시뮬레이션을 이용한 신모델(돔형) 저온저장고 개발)

  • 양길모;고학균;홍지향
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.182-187
    • /
    • 2002
  • 국내 저온저장고의 주류를 이루고 있는 컨테이너 박스형 저온저장고의 문제점은 재래식 제어방식으로 인한 성능저하 외에도 자체 구조적인 설계상의 문제점을 가지고 있다 이러한 구조적인 문제점을 열거하면 다음과 같다. 첫째, 한 축 방향에 설치되어있는 유니트 쿨러에서 토출되는 냉기에 의해 저장고 내의 공기를 냉각하는 형태이기 때문에 냉기의 분포가 고르지 못하여 균일한 온도 분포를 이루기 어렵다는 단점을 가지고있다. 둘째, 한 축 방향에서 토출되는 냉기가 맞은 편 벽면까지 도달해야 하기 때문에 풍속이 강해야 하며 이로 인해 저장 청과물이 냉해를 쉽게 입고 심한 증산작용에 의해 쉽게 표면건조나 중량감소를 가져온다. 셋째, 천장부와 측벽부가 90$^{\circ}$의 경사각을 가지고 있어 공기의 유동이 원활하지 못하여 에디현상으로 인한 온도나 풍속의 불균일 구간을 피해서 청과물을 저장해야 하기 때문에 그만큼 버려지는 공간이 많아 비경제적이다. 넷째, 위와 같은 문제점들 때문에 중ㆍ대형의 저온저장고를 컨테이너 박스형으로 설비 할 경우 보다 심한 온도 불균일과 냉기유동 분포를 보여 경제적인 손실이 더 커지게 되는 악순환을 낳게된다. 이에 따라 본 연구에서는 국내 저온저장고의 구조적인 설계상의 문제점을 인식하고 이를 해결하고자 3차원 CFD 시뮬레이션을 이용하여 저온저장고의 새로운 모델을 설계하였다. 이론 바탕으로 직접 저온저장고의 시작기를 개발하여 저장고 내부의 역 유동과 난류유통을 해석하였다. (중략)

  • PDF

제트베인의 형상과 받음각 변화에 따른 유동특성연구

  • 길경섭;신완순;이택상;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.35-35
    • /
    • 2000
  • 추력 편향제어(Thrust Vector Control)는 위성 발사체나 대륙간 탄도 미사일과 같이 공기가 희박한 고 고도에서의 비행자세 제어와 궤도수정, 지대공이나 함대공 유도탄처럼 발사 직후 저속에서 임의의 방향으로 급선회해야 할 경우에 노즐의 배출가스 방향을 직접 조절하여 모멘트를 발생시키는 제어방식을 말한다. 이 방식 중 널리 사용되고 있는 제트 베인 추력 편향제어방식은 베인이 직접 고온, 고속의 가스 흐름내에서 작용하기 때문에 재료는 내열성과 제트 베인 주위에 형성되는 유동 특성, 그리고 베인간의 유동 간섭이 중요한 인자이다. 그러므로, 제트 베인의 실용화는 수치해석에 의존하던 개발 초기나 중기의 설계 단계에서 벗어나 실제 크기나 축소모델의 유동 모사 시험에 의해 성능이 검증되어야 한다.(중략)

  • PDF

Thw Characteristic of Supersonic Flow with Condensation along a Wavy Wall of Small Amplitute in Channel (미소진폭 파형벽을 가진 유로내에서 凝縮을 수반하는 超音速 유동의 特性 - 수치해석 결과)

  • 김병지;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1990-1997
    • /
    • 1992
  • The characteristic of supersonic flow with condensation along a wavy wall of small amplitude in channel is investigated through the direct marching method of characteristics. The very complex problem that may appear where the overlapping of the same family characteristics occurs, can be satisfactorily solved by means of the modified method suggested by Zucrow. In the present study for the case of supersonic moist air flow, the dependency of location of formation and reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties, on the relative humidity and temperature at the entrance of wavy wall is clarified by plots of streamline, ios-Mach umber and ios-flow properties. Also, it is confirmed that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

A Study of Three Dimensional Flow Characteristics near the Porous Wall (다공성 방풍벽의 3차원 유동특성)

  • Kim, Sung-Hoon;Kim, Il-Hyun;Chang, Young-Bae
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • A study has been done on the three dimensional turbulent flow characteristic near the porous wall. The porous holes are considered by penetrating the wall in regular arrangement, and porosity is controlled by diameter of holes. Flow characteristics near the three dimensional porous wall are compared with field test results and self-generated experimental results. FLUENT is employed for computational analysis on the effect of three dimensional porosity with flow and pressure characteristics. As a result, drag coefficient is defined and compared for three dimensional effect. The drag coefficient is mostly a function of porosity, whereas the effect of Reynolds number is minimal, and its correlation is presented in terms of three dimensional porosity.