• Title/Summary/Keyword: 공기압력변화

Search Result 344, Processing Time 0.031 seconds

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Mach 5 Performance Tests of Scramjet Engine Intake Using Free-jet Type Ground Propulsion Test Facility (자유제트형 지상추진 시험설비를 사용한 스크램제트 엔진 흡입구의 마하 5 성능시험)

  • Lee, Yang Ji;Yang, Inyoung;Lee, Kyung Jae;Oh, Jung Hwan;Choi, Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.10-20
    • /
    • 2022
  • The performance analysis test of the scramjet engine intake was conducted under the Mach 5 condition of the scramjet engine test facility, a free-jet ground test facility of the Korea Aerospace Research Institute. A pitot/static pressure rake installed at the rear of the isolator was designed and manufactured to measure the total pressure recovery rate and mass capture ratio, which are typical performance factors of the scramjet engine intake. The effect of the rake mounted at the rear of the isolator on the intake, the performance analysis measured by the rake, and the change in wall static pressure distribution according to the angle of attack were performed. Finally, the point at which the intake unstart occurred was confirmed by using the rear back pressure adjusting device, which simulates pressure rise in the combustor, and the results are summarized in this paper.

An Ignition Characteristics of Slinger Combustor at High Altitude Condition (고고도 조건에서 슬링거 연소기의 점화특성 연구)

  • Lee Kang-Yeop;Lee Dong-Hun;Park Young-Il;Kim Hyung-Mo;Park Poo-Min;Lee Kyung-Jae;Choi Ho-Jin;Chang Hyun-Soo;Choi Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.309-312
    • /
    • 2005
  • High altitude ignition test was performed to understand high altitude ignition characteristics of slinger combustor. To verify ignition limits, test was carried out with variation of altitude and fuel nozzle rotational speed using AETF(Altitude Engine Test Facility) in KARI(Korea Aerospace Research Institute). From the result, the effect of major factors which affect on ignition characteristics was observed. The reduction of ignition limit with increasing altitude and expansion of ignition limit with increasing rotational speed of fuel nozzle was verified. Also minimum rotational speed of fuel nozzle at high altitude must be greater than that of seal level condition.

  • PDF

An Experimental Study on Design and Starting Characteristics of a Sub-scale Diffuser for Simulating High-Altitude Environment (고고도 환경 모사용 축소형 디퓨저 설계 및 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Yang, Jae-Jun;Kim, Sun-Jin;Kim, Jung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.21-28
    • /
    • 2009
  • This experimental study was performed to find the important design parameters and the starting characteristics of a supersonic exhaust diffuser. The experimental study was carried out on a scaled down model of straight cylindrical supersonic exhaust diffuser, in order to evaluate the effects of operating fluid(air, nitrogen), the diffuser inlet area over the primary nozzle throat area($A_d/A_t$), the inlet pressure of primary nozzle, diffuser length over diffuser inner diameter($L_d/D_d$) and existence or nonexistence of diffuser divergence. The test results showed that the starting pressure increased with decrease in diameter of primary nozzle, and the measured starting pressure of the diffuser had approximately 90~98% efficiency as compared with the predicted starting pressure. Also, the diffuser was started at all case, regardless of $L_d/D_d$ (above 8.4) and diffuser divergence. The result of this study can be used as an essential database for developing a simulated high-altitude facility for real-scale model.

Spray Breakup Characteristics of a Swirl Injector in High Pressure Environments (고압환경에서 스월 인젝터의 분무 및 분열특성)

  • 김동준;윤영빈;임지혁;길태옥;한풍규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.97-104
    • /
    • 2006
  • The spray and breakup characteristics of swirling liquid sheet were investigated by measuring the spray angle and breakup length as the axial Weber number Wel was increased up to 1554 and the ambient gas pressure up to 4.0MPa. As Wel and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces, and thus the liquid sheet disintegrated near from the injector exit. The measured spray angles according to the ambient gas density were different before and after the sheet breaks. Before the liquid sheet breaks, the spray angle was almost constant, but once the liquid sheet started to breakup, the spray angle decreased. And the breakup length decreased because of the increase of the aerodynamic force as the ambient gas density and Wel increased. Lastly, the measured breakup length according to the ambient gas density and Wel was compared with the result by the linear instability theory. We found that the corrected linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

Measurement of mass Transfer Coefficients for Adsorptive Bulk Gas Separation with Velocity Variations (기체속도가 변하는 벌크기체의 흡착공정에서 물질전달계수의 측정)

  • Min, Jun-Ho;Choi, Min-Ho;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.310-318
    • /
    • 1999
  • The concentration breakthrough curves were examined to predict mass transfer coefficients of nitrogen and oxygen in adsorption column for design data of PSA process. Experimental breakthrough curves for bulk gas flow were compared with theoretical simulation results. For quantitative analysis of the adsorption, coupled Langmuir isotherm was considered and LDF model was used to describe the mass transfer effect. In the experimental and theoretical results, it was found that mass transfer coefficient was not affected by flow rate but strongly affected by pressure. As a result of this tendency, mass transfer resistance in this system was proved to belong to the macropore diffusion controlling region and the mass transfer coefficients could be expressed by exponential functions of pressure change. The mass transfer coefficients for one component, nitrogen or oxygen, were successfully applied to breakthrough curves for bulk mixed gases. The experimental curves were reasonably in consistent with the theoretical curves and the error time was less than 5 percent.

  • PDF

Characteristics of Ultrafiltration and Spray Drying for Crude Protein Bound Polysaccharides Isolated from Agaricus blasei Murill (아가리쿠스버섯에서 분리한 조단백다당류의 막분리 및 분무건조 특성)

  • 홍주헌;윤광섭;최용희
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • This study was conducted to investigate the characteristics of ultrafiltration and spray drying process for crude protein bound polysaccharide(CPBP) isolated from Agaricus blasei Murill. In ultrafiltration process, the permeate flux increased with the increase of operating pressure and temperature. The permeate flux declined continuously while the fouling materials were accumulated on the membrane as the operation time increased. In comparing of raw CPBP and filtered CPBP, the viscosity of CPBP treated UF was decreased and $\Delta$E value of treated samples was increased. Thermal efficiencies of spray drying process were increased by increasing inlet temperature, feed rate and feed concentration.

Condensation processes in transonic two-phase flows of saturated humid air using a small-disturbance model (미교란 모델을 이용한 포화 습공기 천음속 2상 유동에서의 응축현상)

  • Lee, Jang-Chang;Zvi Rusak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • Transonic two-phase flow of Saturated humid air, in which relative humidity is 100%, with various condensation processes around thin airfoils is investigated. The study uses an extended transonic small-disturbance(TSD) model of Rusak and Lee [11, 12] which includes effects of heat addition to the flow due to condensation. Two possible limit types of condensation processes are considered. In the nonequilibrium and homogeneous process, the condensate mass fraction is calculated according to classical nucleation and droplet growth rate models. In the equilibrium process, the condensate mass fraction is calculated by assuming an isentropic process. The flow and condensation equations are solved numerical1y by iterative computations. Results under same upstream conditions describe the flow structure, field of condensate, and pressure distribution on airfoil's surfaces. It is found that flow characteristics, such as position and strength of shock waves and airfoil’s pressure distribution, are different for the two condensation processes. Yet, in each case, heat addition as a result of condensation causes significant changes in flow behavior and affects the aerodynamic performance of airfoils.

Experimental Study on Transient Response According to Variation of Rib Height at Fuel Cell Plate (연료전지용 분리판의 리브 높이 변화에 따른 응답성 변화에 관한 실험적 연구)

  • Nam, Ki Hoon;Yun, Sung Ho;Han, Sung Ho;Choi, Nam Hyeon;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1009-1014
    • /
    • 2013
  • In the present study, using a variation of rib height, the transient response and the performance are investigated. The cell voltage is acquired according to the current density change($0.8A/cm^2$ to $1.0A/cm^2$) under same stoichiometry and relative humidity. The different level of undershoots appeared at the different clamping pressure(1.5MPa and 2.0MPa) and different rib height. At 1.5MPa clamping pressure, rib manufactured cut at $100{\mu}m$ height goes to steady state faster than reference plate and has lower maximum undershoot voltage. But performance is lower than reference plate due to increasing contact resistance.

Analysis of Composite Microporosity according to Autoclave Vacuum Bag Processing Conditions (오토클레이브 진공포장법의 공정 조건에 따른 복합재의 미세기공률 분석)

  • Yoon, Hyun-Sung;An, Woo-Jin;Kim, Man-Sung;Hong, Sung-Jin;Song, Min-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.199-205
    • /
    • 2019
  • The composite material has the advantage that the fibers can be arranged in a desired direction and can be manufactured in one piece. However, micro voids can be formed due to micro air, moisture or improper curing temperature or pressure, which may cause the deterioration in mechanical strength. In this paper, the composite panels with different thicknesses were made by varying the curing pressure in an autoclave vacuum bag process and their microporosities were evaluated. Microporosity was measured by image analysis method, acid digestion method, and combustion method and their correlation with ultrasonic attenuation coefficient was analyzed. From the test results, it was found that the acid digestion method had the highest accuracy and the lower the curing pressure, the higher the microporosity and the ultrasonic attenuation coefficient. In addition, the microporosity and the ultrasonic attenuation coefficient were increased as the thickness of the composite panel was increased at the same curing pressure.