• Title/Summary/Keyword: 공기압력변화

Search Result 344, Processing Time 0.027 seconds

Analysis of Secondary School Science Teacher's Concept on Atmospheric Pressure (중등학교 과학 교사들의 대기압에 관련된 개념 분석)

  • Lee, Jee-Hee;Jeong, Jin-Woo;Woo, Jong-Ok
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.560-570
    • /
    • 2002
  • This study was focused on whether secondary science teachers have consistent, integrative scheme on the definition of atmospheric pressure and phenomena caused by air pressure. We had made questionnaire and let 94 science teachers answer. We sorted the responses according to their major, school and compared them with the description in textbooks. The result can be summarized into three findings. First of all, teachers whose major is chemistry have strong tendency to understand that atmospheric pressure is caused by molecular motion though it, in textbooks, is defined as the pressure by weight of air mass. The half of respondents believed that decreasing of atmospheric pressure in high altitude is due to molecular motions, while most textbook says decrease in the weight of air mass. Secondly, many science textbooks show that air mass expands, rises, becomes less dense and the pressure of atmosphere becomes low when it receives heat. So, most of respondents explained low pressure is formed by lower density. Thirdly, they answered that they just teach the phenomena of air pressure by using the textbooks which mainly deal with the present state rather than a principle. In conclusion, the science textbooks should present the exact description and consolidated structures of those concepts to prevent students from having misconceptions on air pressure. In addition, training program for science teachers would be necessary to reconsider and explore the natural phenomena in various viewpoints.

Comparison of PSA and VSA processes for air separation (공기 분리를 위한 O2 PSA (Pressure Swing Adsorption)공정과 VSA (Vacuum Swing Adsorption) 공정의 설게 및 성능 비교)

  • Lee, Sang Jin;Ahn, Hyungwoong;Jee, Jeung-Geun;Kim, Min-Bae;Moon, Jong-Ho;Bae, Yoon-Sang;Lee, Chang-Ha
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • PSA and VSA processes have been used broadly to produce oxygen from ambient air in midium- or small-sized plants. PSA and VSA processes are the separation methods which use difference of amount adsorbed as pressure is changed periodically, but they have the differences in pressurization and regeneration. In this study, the performance of 6-step PSA process was compared with that of 5-step VSA process with respect to purity and recovery. In addition, the effects of each step (pressurization step, adsorption step, and pressure equalization step) on purity and recovery were investigated. As a result, the VSA process using zeolite 10X showed better performance than the zeolite 5A PSA and zeolite 13X VSA process in comparison with purity, recovery and productivity. And it was enough to apply the vacuum pressure of 200 torr for the VSA, which produced over 90% oxygen with 70% recovery.

  • PDF

An Experimental Study for the Performance Test of a Ballistic Range Simulator (Ballistic Range Simulator의 성능평가를 위한 실험적 연구)

  • Kang, Hyun-Goo;Rajesh, G.;Lee, Jung-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.367-370
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The ballistic range consists of a high-pressure tube, piston, pump tube, shock tube and launch tube. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass are varied to obtain various projectile velocities. This study also addresses the effect of the presence of a shock tube located between the pump tube and launch tube on system study. The experimental results are compared with those obtained through an author's theoretical study.

  • PDF

Visualization of Supersonic Projectile Flow in a Ballistic Range (Ballistic Range를 이용한 초음속 Projectile유동의 가시화)

  • Kang, Hyun-Goo;Shin, Choon-Sik;Choi, Jong-Youn;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.263-266
    • /
    • 2007
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass and piston mass are varied to obtain various projectile velocities. The flow field is visualized to see flow around projectile.

  • PDF

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor (정익 슈라우드 공기분사가 단단 천음속 축류압축기의 공력성능에 미치는 영향)

  • Dinh, Cong-Truong;Ma, Sang-Bum;Kim, Kwang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

Numerical modeling of rapidly varied flow using the SST turbulence model and a hybrid free-surface capturing approach (자유수면 포착기법과 난류모형을 이용한 급변류 수치모델링)

  • Kim, Byung Ju;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.149-149
    • /
    • 2020
  • 하천에서 물 흐름이 보와 댐과 같은 수공구조물을 지날 때 일반적으로 흐름상태에 다양하고 급진적인 변화가 발생한다. 특히 흐름이 구조물을 지나면서 사류(supercritical flow)로 변하고 다시 상류(subcritical flow)로 복원되면서 일어나는 도수(hydraulic jump) 현상은 수위의 급변화, 흐름 에너지 소산, 변동성이 강한 압력 분포 등이 특징이다. 이러한 흐름 특성들은 보나 여수로와 같은 수공구조물 자체의 성능뿐만 아니라 이들 수공구조물의 하류에서 발생하는 국부세굴로 인해 구조물의 안정성에 부정적인 영향을 줄 수 있다. 따라서 수공구조물을 설계할 때는 이들 구조물을 통과하는 흐름의 비정상 난류 흐름 특성을 정확하게 해석하여 반영하여야 한다. 이 연구에서는 k-omega SST 난류 모형과 자유수면의 급격한 변동을 해석하기 위한 하이브리드-VOF(hybrid volume of fluid)기법을 이용하여 도수현상을 수치적으로 재현하고자 한다. 기존 CFD(computational fluid Dynamics) 모델링에서는 자유수면 변동의 영향을 고려하기 위해 VOF 기법을 많이 사용하였다. 하지면 전통적인 VOF 기법은 다상흐름(multiphase flow)을 오직 부피분율(volume fraction)의 함수로만 고려하며 모의함으로써 강한 수면변동뿐만 아니라 공기연행(air entrainment)를 동반하는 난류 흐름을 모의하는데는 한계가 있다. 이 연구에서 이용하는 Eulerian 기법인 하이브리드 VOF 기법은 물과 공기의 각 상에 대하여 흐름 특성들을 개별적으로 계산하기 때문에 공기연행을 포함한 급변류 흐름에서 전통적인 VOF 기법보다 적용성이 우수하다. 이와 같은 난류모형과 자유수면 포착기법을 이용하여 3차원 비정상 난류 흐름 수치모형을 구축하여 수공구조물 주변에서 발생하는 강한 공기연행과 난류 특성를 보이는 급변류를 수치적으로 재현한다. 이 연구는 계산된 수치해석 결과를 기존 수리실험 결과와 비교하여 수치모형의 적용성을 평가하고 도수 현상에서 발생하는 독특한 흐름 특성을 제시한다.

  • PDF

The Study of Students' Misconception about the Properties of Gas in Secondary School (기체의 성질에 대한 중·고등 학생들의 오개념에 관한 연구)

  • Yoo, Seung A;Koo, In Sun;Kim, Bong Gon;Kang, Dae Ho
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.564-577
    • /
    • 1999
  • The purpose of this study is to help an improvement of conceptional learning about the properties of gas based on molecular kinetics for secondary school students and to help an improvement of teaching method for reducing misconceptions regarding the molecular kinetics in gas phase for teachers. The subjects of this study were l00 students of 9th grade and 150 students of 11th grade students. The results showed that students had various misconceptions about the properties of gas. The major misconceptions are as follows. First, the energy is released due to the collision of the molecules, and also the direction of action of pressure is related to the direction of gravity. Second, as molecule is heated, the size of molecule is increased, and the molecule is more active because the number of moIecules is increased. Third, the pressure is reduced because of decreasing the temperature at the higher altitude and the pressure of gas molecuIes is inversely proportional to the collision number of gas molecules. Forth, the numbers of molecules of two different molecules in two same containers differ because the size of molecules differ each other. The results suggest that these problems ought to be addressed in chemistry textbooks and in the classroom teaching of chemistry. If teachers are more aware of students' misconceptions they wilI be better able to remove them.

  • PDF

A Study on the LPG Explosion Characteristics of Non-uniform Concentration (불균일 농도 LPG의 폭발 특성에 관한 연구)

  • 오규형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.111-116
    • /
    • 2003
  • LPG explosion characteristics in non-uniform concentration was investigated with a 270 liter explosion vessel of which the scale is 100 cm${\times}$60 cm${\times}$45 cm. Vented explosion and closed explosion system were used. Experimental parameter were position of ignition source, nozzle diameter and flow rate of gas. Non uniform concentration was controlled by the nozzle diameter and flow rate. Explosion pressure were measured with strain type pressure sensor and the flame behavior was pictured with the video camera. Based on this experimental result, it was found that the flow rate of gas and the duration of gas injection are important factor for mixing the gas in the vessel. And as the increase the non-uniformity of gas concentration, explosion pressure and pressure rise rate Is decrease but the flame resident time in the vessel is increase. Therefore gas explosion to fire transition possibility will increase in non-uniform concentration gas explosion.

Study on the Turbine Performance of 7 ton Liquid Rocket Engine Turbopump (7톤급 액체로켓 엔진 터보펌프 터빈 성능 연구)

  • Lee, Hanggi;Shin, Juhyun;Choi, Changho
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This study was performed to evaluate the turbine performance of a turbopump in the third stage engine of the Korea Space Launch Vehicle-II. The turbine is a supersonic impulse type with a single rotor. One nozzle is for starting and four remaining nozzles are for steady operation. A similarity test was carried out in the high air test facilities at the Korea Aerospace Research Institute. Test results showed that turbine efficiency changed much more from rotational speed variations than by pressure ratio variations. These results showed characteristics similar to other supersonic impulse turbines.