• Title/Summary/Keyword: 공기스월 방향의 연료스월

Search Result 2, Processing Time 0.02 seconds

Influence of Fuel Swirl Flow on NOx Emission in Swirl Combustor (스월연소기에서 연료스월유동이 NOx 배출에 미치는 영향)

  • Cho, Jin-Woo;Whang, Sang-Ho;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.70-75
    • /
    • 2005
  • In this study, experimental investigations were conducted on NOx emission characteristics with fuel swirl flow in swirl combustor. Many types of vanes, which altered air and fuel swirl angles, were employed to verify the mixing processes. For strong air swirl, fuel counter-swirl resulted in relatively large turbulent intensity, high energy to the high frequency region and narrow width of high temperature region compared with co-swirl condition. These effects of fuel counter-swirl resulted in low NOx emission characteristics at strong air swirl condition. And NOx reduction mechanism was also discussed.

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.