• Title/Summary/Keyword: 공기냉각

Search Result 425, Processing Time 0.024 seconds

A Study on Alternative Fan Selection and Verification in Military Electronic Equipment (방산용 전자장비의 팬 선정 및 검증에 관한 연구)

  • Jin, Sung Eun;Kim, Hwan Gu;Yoon, Eui Youl;Jeon, Hee Ho;Kim, Seung Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1091-1097
    • /
    • 2017
  • Sales of commercial-type cooling fans intended for application in military electronics are often discontinued during equipment production. This results in requirements for alternative fan selection as well as equipment performance and reliability tests, such as high-temperature operation testing. This study deals with alternative fan selection and verification methods that can be used during the production process. First, an alternative fan was selected by calculating the flow and pressure required to effectively cool the equipment, then the feasibility of the selected fan was verified using a reliable CFD heat dissipation analysis model. Following this, a high-temperature operation test was performed using the alternative fan in the equipment. Results demonstrated that the equipment satisfied its required function in a high-temperature environment, and the main parts as well as internal air temperature were found to be thermally stable.

An Experimental Study of Evaporative Heat Exchangers with Mini-channels (물의 증발잠열을 이용하는 미니채널 열교환기의 실험적 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.245-253
    • /
    • 2010
  • The present study shows some results of developing evaporative heat exchangers with mini-channels. Heat exchangers with three different water paths were manufactured and tested to compare performances of cooling and pressure drop. Among the three types of heat exchangers, Type 2 with full-etching was proved to be the best in the cooling performances for considered operating conditions, and thus it is recommended to adopt Type 2 for its simplicity of production and outstanding performance. However, Type 1 was shown to be better when it is operated at a high air inlet temperature condition. The developed evaporative heat exchanger will be installed in Environmental Control Systems(ECSs) for aerial vehicles, and it can be used effectively in case an ECS is not only limited in its weight and volume but also required to absorb heats without supplying water (or a coolant) for a certain period of time.

  • PDF

Thermal Flow Analysis for Development of LED Fog Lamp for Vehicle (차량 LED 안개등 개발을 위한 열유동 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • In order to overcome these disadvantages, the halogen light source, which was previously used as a vehicle fog light, has increased power consumption and a short lifetime, and thus, an automobile light source is gradually being replaced with an LED. However, when the vehicle LED fog light is turned on, there is a disadvantage in reducing the life of the fog lamp due to the high heat generated from the LED. The heat generated by the LED inside the fog lamp is mainly emitted by the heatsink, but most of the remaining heat is released to the outside through convection. When cooling efficiency decreases due to convection, thermal energy generates heat to lenses, reflectors, and bezels, which are the main parts of lamps, or generates high temperatures in LED, thereby shortening the life of LED fog lights. In this study, we tried to improve the heat dissipation performance by convection in addition to the heat dissipation method by heat sink, and to determine the installation location of vents that can discharge the internal air or intake the external air of LED fog lamp for vehicle. Thermal fluid analysis was performed to ensure that the optimal data were reflected in the design. The average velocity of air increased in the order of Case3 and Case2 compared to Case1, which is the existing prototype, and the increase rate of Case3 was relatively higher than that of other cases. This is because the vents installed above and below the fog lamps induce the convective phenomena generated according to the temperature difference, and the heat is efficiently discharged with the increase of the air speed.

Status of Packaging Materials for Frozen Foods and Analysis of Temperature Changes inside Packaging Materials during Frozen Process (냉동식품용 포장재 현황 및 냉동 과정 중 포장재 내부 온도 변화에 관한 연구)

  • Yoo, Seungwoo;Kwon, Sangwoo;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • This study analyzed various packaging materials and types for frozen foods and the effects of packaging materials on temperature changes during frozen process. Pouches with different film thickness were prepared and placed in an IQF freezer, then the temperature inside pouches measured using a deep thermometer. The most common types of primary packaging for frozen foods in the market was plastic pouches with polyethylene or polyamide/polyethylene multilayer materials. The temperature change inside of packaging was delayed with film thickness increased. As the size of packaged food increased, the temperature change inside the food was slowed down. In addition, the pouches with air inside took more time to reach $-30^{\circ}C$ compared to pouches with less air during frozen process. This study provides information on packaging materials and types for frozen foods and preliminary data of temperature change by different types of packaging.

Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement (냉각공기 유속 측정에 기반한 철도차량용 공기압축기 열교환기의 열전달 특성 분석)

  • Ahn, Joon;Kim, Moo Sun;Jang, Seongil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.447-454
    • /
    • 2017
  • In this study, local velocity distribution of cooling air in a heat exchanger used in an air compressor for a railway car was measured and heat transfer characteristics of the heat exchanger were analyzed. First, heat transfer coefficient and fin performance of the cooling air side were predicted and was checked if the fin of the heat exchanger was effectively used. Distribution of air flow rate at high temperature side was predicted through pipe network analysis and heat resistance at high temperature and low temperature side were predicted and compared. Spatial distribution of temperature in the interior and surface of the square channel constituting high-temperature side was predicted and appropriateness of the size of the heat exchanger was examined. As a result of the analysis, the present size of the heat exchanger could be reduced and it could be effective to promote heat transfer inside the heat exchanger rather than outside to improve performance of the heat exchanger.

The Effect of Ambient Air Condition on a Hot Steel Plate Cooled by Impinging Water Jet (주변공기조건이 충돌수분류에 의한 고온강판의 냉각에 미치는 영향 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Seung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2000
  • It is observed that the cooling capacity of impinging water jet is affected by the seasonal conditions in steel manufacturing process with large scale. To confirm this phenomena, the cooling experiments of a hot steel plate by a laminar jet were conducted for two different initial ambient air temperature($10^{\circ}C$ and $40^{\circ}C$) in a closed chamber, and an inverse heat conduction method is applied for the quantitative comparison. It is found that the cooling capacity under $10^{\circ}C$ air temperature is lower than that under $40^{\circ}C$, as is the saturated water vapor is more easily observed, and the amount of total extracted heat in the case of $10^{\circ}C$ is smaller by nearly 15% than that of $40^{\circ}C$ case. From these results, it is thought that the quantity of water vapor, which could be absorbed until saturation, effects on the mechanism of boiling heat transfer.

Performance Development of the Silencer for a Vortex Tube (볼텍스 튜브용 소음기 성능 개발)

  • Jo, Young-Ho;Kim, Chang-Su;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.659-661
    • /
    • 2012
  • 볼텍스 튜브란 압축가스의 흐름을 뜨거운 공기와 차가운 공기로 전환 시켜주는 냉각 장치이다. 본 논문에서는 볼텍스 튜브에서 발생되는 소음의 특성을 파악하고자 하였다. 1/2in 소음기와 3/8in 소음기는 소음기를 장착하지 않은 경우 보다 평균8~10dB 감소되었고, 1/4in 소음기는 약15dB정도 감소하였다. 출구를 가공한 1/2in 소음기의 소음은 소음기를 장착하지 않은 경우와 비슷하고 3/8in 소음기는 소음 감소폭이 적었다. 1/4in 소음기기의 소음은 압력이 커질수록 소음이 급격히 커지는 것을 알 수 있다. 기존의 소음기와 출구를 가공한 소음기를 비교 하였을 경우 1/2in 소음기에서는 평균 9dB정도 기존 소음기의 성능이 좋고, 3/8in 소음기에서는 평균 7.5dB정도 성능이 좋은 것을 알 수 있다. 1/4in 소음기에서는 평균 9.5dB정도 기존 소음기가 소음 감소폭이 크며 압력에 따른 소음의 감소폭이 차이가 큰 것을 알 수 있다.

  • PDF

Modeling of Void growth in partial Frame Process (PFP성형공정의 기포성장에 관한 모델링)

  • 안경현
    • The Korean Journal of Rheology
    • /
    • v.8 no.3_4
    • /
    • pp.207-214
    • /
    • 1996
  • 사출성형은 많은 장점과 유용성에도 불구하고 싱크마크나 휨과 같은 변형문제를 피 하기 어렵다. 이것은 성형품의 부위별 온도분포 및 냉각속도 차이에 의한 잔류응력에 기인 하는 것으로 구조가 복잡하거나 크기가 쿤 경우에 더욱 더 문제가 되기 쉽다. 이와 같은 문 제를 해결하기 위하여 성형품의 내부에 기포를 형성시켜 수지의 수축분을 기포의 성장으로 보상하여 주는 가스사출성형이 개발되어 많이 활용되고 있는 실정이다. 한편 일반 가스성형 과 달리 수지를 완전히 채운후 저압의 공기를 이용하여 기포를 발생시켜 수지의 체적수축분 을 보상해주는 PFP성형기술은 가스사출의 나점인 공기의 유동조절문제를 해결하고 비용이 저렴한 등의 잇점을 가지고 있다. 이 과정은 가스성형공정의 2차 침투과정과 매우 유사하나 아직까지 이에대한 이해나 연구는 매우 부족한 실정이다 본 연구는 기포의 성장이 수지의 체적수축에 의한 것이라는 가정에 근거하여 기포성장길이에 관한 모델링을 수행한 것이다. 실험결과와의 비교를 통하여 기본 가정에 대한 타당성을 검증하고 여러 인자들의 영향을 살 펴보았다. 본 연구는 PFP성형공정에 대한 이해를 증진시켜 금형설계 및 성형조건 설정에 대한 가이드라인을 제시하며 아울러 PFP공정에 대한 보다 체계적인 이해 및 일반가스성형 의 2차 침투과정 등의 관련 현상에 대한 이해 및 연구에 도움이 될것으로 기대된다.

  • PDF

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

Experimental & Performance Analysis of an Inert Gas Generator for Fire Suppressing (화재진압용 비활성가스제너레이터 성능해석 및 시험)

  • 김수용;코발레프스키
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.86-89
    • /
    • 2001
  • Present study deals with performance analysis and experimental investigation of an inert gas generator (IGG) which can be used as effective means to suppress fire. The IGG uses a turbo-jet engine to generate inert gas for fire extinguishing. It is generally known that a less degree of oxygen content in the product of combustion will increase the effectiveness of fire extinguishing. An inert gas generator system with water injection has advantages of suffocating and cooling effects that are very Important factors for fire extinguishing. Some aspects of influencing parameters, such as, air excess coefficient, compressor pressure ratio, air temperature before combustion chamber, gas temperature after combustion chamber, mass flow rate of water injection etc. on the performance of IGG system are investigated.

  • PDF