• Title/Summary/Keyword: 공극 충진

Search Result 47, Processing Time 0.027 seconds

A Case Study on the Cause and Reinforcement of Railroad Facilities Settlement According to the Ground Excavation (지반굴착에 따른 철도시설물의 침하 원인 및 보강 사례연구)

  • Oh, Beyung-Sam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.85-94
    • /
    • 2012
  • Recent development trend of construction projects in the urban area is the efficient use of insufficient land, however caused to difficult construction conditions because of many adjacent structures. This paper presents the case study that analyzed the ground settlement of railroad structure for the double track railway project of Gyeongui line, adjacent to the high rise building under ground excavating for substructure work, considering interaction of soft ground characteristics. Field survey and measurement works were carried out during construction of station and excavation of high rise building, and field data were analyzed to find the source of settlement of platform and railway. In addition, the soil reinforcement and foundation restoration were performed using in-situ injection method, i.e., D-ROG(Digitalized Restoring On Grout) method which filled the pore of bottom and around of foundation with micro-cement.

A Study on the Characteristics of Mine Liner According to the Contents of CSA Using Industrial Byproducts (산업부산물을 활용한 CSA 첨가량에 따른 광산 차수재 특성에 관한 연구)

  • Kang, Suk-Pyo;Lee, Yeong-Hun;Kang, Hye-Ju;Cho, Sung-Hyun;Cho, Yong-Kwang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.74-81
    • /
    • 2019
  • In this study, to characterize the application of CSA and dihydrate gypsum Utilizing industrial byproducts, we investigated the characteristics of CSA and dihydrate gypsum to investigate the characteristics of Mine Liner according to the addition amount. As a result of compressive strength, length change and absorption rate of mining lime wastewater according to CSA addition amount, up to 30% of CSA showed a positive effect on shrinkage and absorption reduction effect as well as strength at initial age. However, due to excessive use of CSA 50%, it was reduced by 15% compared to OPC due to increase of absorption rate and decrease of cement amount due to over expansion rather than shrinkage compensation and void filling.

A Basic Study to Use Recycled Limestone Powder as a Mixture for Secondary Concrete Products (재활용 석회석 분말을 콘크리트 2차제품 혼합재로 이용하기 위한 기초적 연구)

  • Jung, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • In this study, as a basic study to use recycled limestone powder as a secondary product mixture for concrete, it was found that the compressive and flexural strengths were equal to or slightly improved compared to Plain up to 10% and 20% of the RLP mixing ratio, but the strength was rather decreased at 30% mixing. As a result of the heat of hydration experiment, as the RLP mixing rate increased, the heat of hydration decreased, and the elapsed time of the maximum heat was also delayed. As a result of the drying shrinkage test, as the fine powder RLP filled the internal pores of the cement mortar, the drying shrinkage decreased as the mixing rate increased. The compressive strength, water absorption rate, and compressive strength after freezing and thawing of the concrete block mixed with RLP 20% all satisfied the group standard criteria of the Korea Concrete Industry Cooperative Federation, confirming the possibility of use as a mixed material.

Electroosmotic Water Removal in Wet Porous Materials (다공성 흡수매체에 대한 정전삼투 탈수효과)

  • Park, Seon-Mi;Park, Mi-Jung;Ha, Ji-Soo;Chang, Hyuk-Sang
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Various technical methods are applied for removing water from the water-retaining media, and the energy efficiency is the main concern in those methods. The electroosmotic process is studied as an efficient way for dewatering. An experimental electroosmotic reactor is designed and used for evaluating the effects of operational variables. The operational variables such as the electrical fields and the structure of water-retaining medias were studied. Three different shapes of polarized electric fields in ranges of 0-100 V/cm and 0-10 kHz are used as the source of electric voltage. The effect of electroosmotic process with respect to the structural variation is estimated by filling the electroosmotic reactor with the glass beads in 0.18 mm, 0.35 mm and 1.2 mm in diameters. 6% of water removal is obtained in the simulating electroosmotic reactor of glass beads. The estimated energy consumption in the simulating electroosmotic was 330~490 cal/g-water.

Analysis of Fine Particle Transfer and Shear Strength Increase Using PFC in Permeation Grouting (PFC를 이용한 침투그라우팅시 미세입자의 이동 및 전단강도증가 해석)

  • Lee, Wan-Ho;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.49-58
    • /
    • 2007
  • Numerical experiments using a distinct element code (PFC3D) were carried out for the analysis of grout-material transfer in soil layers and also for the analysis of increase in mechanical strength after permeation grouting. For rapid analysis, up-scaling analysis in length scale was adopted, and the following observations were made from the numerical experiments. Firstly, the relative size of grout material with respect to the in situ soil particles controlled the transfer distance of the grout particles. When the size of grout particle was 0.2 to 0.25 times of the in situ soil particles, clogging of pore spaces among the in situ soil particles occurred, resulting in restricted propagation of grout particles. It was also found that there was a threshold value in the size of grout particle. Below the threshold value, the transfer distance of the grout particle did not increase with the decrease of particle size of the grout material. Secondly, the increase in cohesion and internal friction angle was observed in the numerical specimen with grouting treatment, but not with the untreated specimen.

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

Investigation on the Technical Characteristics and Cases of Salt Cavern for Large-Scale Hydrogen Storage (대규모 수소 저장을 위한 암염 공동 저장 기술 특성 및 적용 사례 분석)

  • Seonghak Cho;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.7-16
    • /
    • 2024
  • This study presents investigation on the technical characteristics and field cases of the salt cavern storage method for large-scale hydrogen storage. The salt cavern storage method enables effective hydrogen storage compared to other methods due to the low porosity and permeability of the rock salt that constitutes the cavern, which is not likely to leak and requires a small amount of cushion gas for operation. In addition, there is no chemical reaction between rock salt and hydrogen, and multiple injection/withdrawl cycles can be performed making it effective for peak shaving and short-term storage. The salt cavern is formed in three stages: leaching, debrining, and filling, and leakage tests are conducted to ensure stable operation. Field applications are currently performing to meet industrial demand in the surrounding area of four sites in the UK and Texas, USA, and salt cavern operation is being prepared for energy storage in European countries such as Germany and France. The investigated results in this study can be utilized as a basic guideline for the design of future hydrogen storage projects.

A Study on the Physical Properties and Permeability of Permaeable Poly Concrete (투수성 폴리머 콘크리트의 물성과 투수성능에 관한 연구)

  • 박응모;조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.213-222
    • /
    • 1998
  • Covering polmer mortar as a filter for permeable polymer concrete on the base polymer concrete is nessary for good permeability from infiltration continuously. Therefore, three covering polymer mortars on the optimum base polymer concrete were cast immediatly following on the casting of the base polymer concrete. They are tested for compressive and flexural strengths, adhesion in tension, hardening shrinkage and permeability, and the effects of the mix proportioning factors on the properties of the permeable polymer concrete are discussed. From the test results, increase in the compressive strength and decrease in the coeffiecient of permeability of base polymer concrete are clearly obserbed with increasing filler-binder ratio. The base polymer concretes having a compressive strength of 9.4~28.3MPa and a coefficient of permeability of 0.12~1.93 cm/s can be produced in the consideration of the mix proportioning factors. Binder and filler contents in mix proportions had a great influence on the permeability of polymer concretes. The mechanical properties of permeable polymer concretes covered with polymer mortar using crushed stone are superior to other filters, and hardening shrinkage is the smallest in filters. It is apparent that adhesion between the base polymer concrete and polymer mortar is affected by the degree of hardening shrinkage. From this study, proper mix proportions can be recommended in the consideration of properties of the permeable polymer concrete.

Effects of Compost Application on Soil Loss and Physico-Chemical Properties in Lysimeters (퇴비시용(堆肥施用)이 토양유실량(土壤流失量)과 토양이화학성(土壤理化學性)에 미치는 영향)

  • Yun, Bong-Ki;Jung, Pil-Kyun;Oh, Se-Jin;Kim, Sun-Kwan;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.336-341
    • /
    • 1996
  • This study was conducted to investigate the effects of compost application on the soil loss and physico-chemical properties at the slope land from 1990 to 1991. Lysimeters with 15% slope. 5m slope length. 2m width and 1.2m depth were constructed in 1984 and filled with sandy loam, loam, clay loam. and clay soils. Treatments were bare soil, compost(1.5ton/10a) and non-compost with soybean-barley cropping system from 1984. Losses of soil were increased with the order of sandy loam, clay, loam and clay loam. Run-off was increased with the order of sandy loam, loam, clay loam and clay, but leachate was decreased with the same order. Compost treatments decreased 33.6-44.6% of soil loss and 17.0-24.0% of run-off but increased 17.1-33.7.% of leachate as compared with the non-compost treatments. The amount of soil loss was positively correlated with the amount of run-off by Y = 12.125+0.063X (r=$0.970^{**}$)and negatively correlated with the leachate by Y=43.425-0.096X(r=$-0.917^{**}$). The application of compost increased soil pH, OM, CEC and extractable cations. Application of compost decreased bulk density but increased porosity, water stable aggregate and available water. These results provide that the compost application plays an important role in conserving soil and water, and improving soil physico-chemical properties.

  • PDF

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.