• Title/Summary/Keyword: 공극크기

Search Result 315, Processing Time 0.023 seconds

Design of Magnetic Fluid Linear Pump Using Permalloy Yoke (Permalloy Yoke를 이용한 Magnetic Fluid Linear Pump의 소형화 설계)

  • Seo, Kang;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.789-791
    • /
    • 2001
  • 이전에 개발된 Magnetic Fluid Linear Pump는 자기 회로가 솔레노이드 형식으로 자기회로의 대부분이 공극이기 때문에 자기저항이 크다. 이런 문제로 인해서 Linear Pump의 자성유체에 영향을 주는 자기장이 크지 않고 펌핑 압력은 높지 않다. 따라서 본 논문에서는 Permalloy Yoke를 이용하여 Linear Pump를 소형화하고 자기 저항을 최소화함으로써 펌핑 압력을 향상시켰다. 또한 Linear Pump의 3D해석을 통하여 Yoke의 폭, 두께, 간격에 대한 최적 크기를 계산하였다.

  • PDF

A study on the Linear Actuator with Magnetic Fluid (자성 유체를 이용한 Linear Actuator에 관한 연구)

  • Seo, Kang;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.81-86
    • /
    • 2002
  • 이전에 Magnetic Fluid를 이용하여 의료기기 등에 사용할 목적으로 Linear Actuator를 설계, 제작하였다. 그러나 이 모델은 공극의 높은 자기저항으로 인해 펌핑 압력이 낮고, 그 부피 또한 크다. 따라서 본 논문에서는 Yoke를 이용하여 Linear Actuator를 소형화하고 자기저항을 최소화함으로써 펌핑 압력을 향상시켰다. 또한 Linear Actuator의 3D해석을 통하여 Yoke의 폭, 두께, 간격에 대한 최적 크기를 계산하고 설계하였으며, 실제 제작 및 실험을 하였다.

  • PDF

Air-Void Structure of Very-Early Strength Latex-Modified Concrete Using Ultra-Fine Fly Ash (울트라 파인 플라이 애시를 사용한 초속경 LMC의 공극구조 특성)

  • Choi, Pan-Gil;Park, Won-Il;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • Very-early strength latex-modified concrete (VES-LMC) was developed with a focus on workability, strength development and long-term durability that would allow for opening a bridge to traffic only 3 hours after concrete placement, which would be useful when repairing concrete bridge deck overlays. However, even though usage of latex in VES-LMC improves the durability, it has a disadvantage that it produces lots of entrained air. Therefore, specific plan is necessary since it is weak for freezing and thawing in air-void structure. In the present study ultra-fine fly ash (UFFA) was used. Test results are follows ; Air content of VES-LMC UFFA (VES-LMC using UFFA) concrete was decreased since major pozzolan reaction was happened in one day. It was also found that total air content of concrete was decreased with pozzolan reaction since air content in 28 days was the same with one day air content. The addition of calcium hydroxide increased entrained air which is smaller than size of 200 ${\mu}m$. It was effective to improve the air-void structure of VES-LMC since spacing factor can be confirmed as smaller than size of 200 ${\mu}m$ using more than 15% of UFFA.

A Study on the Characteristic of Capillary Pore and Chloride Diffusivity by Electrical Difference of High-Strength Concrete Using Metakaolin (메타카올린을 사용한 고강도콘크리트의 모세관공극 특성과 전위차 염소이온 확산계수에 관한 연구)

  • Kim, Nam-Wook;Yeo, Dong-Goo;Song, Jun-Ho;Bae, Ju-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.499-506
    • /
    • 2007
  • According to the high demand of concrete structures with high performance, various studies have examined on the high performance concrete, especially high strength concrete. Various admixtures are required to produce high strength concrete and silica fume has been the most popular admixture. Recently, however, metakaolin, which is similar to silica fume in properties but cheaper, has been introduced to high strength concrete. In this study, high-strength concrete using metakaolin were studied of capillary pore structure by mercury intrusion porosimetry technique and the accelerated chloride diffusivity by electrical difference. In result, it was found that the pore structure improved and compressive strength increased and chloride diffusivity reduced as more metakaolin content was added. In addition, a regression analysis of $5{\sim}2,000nm$ pore volume and both compression strength and chloride diffusivity revealed that each these had a high correlation of about 0.76 and 0.68.

Well Log Analysis using Intelligent Reservoir Characterization (지능형 저류층 특성화 기법을 이용한 물리검층 자료 해석)

  • Lim Song-Se
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Petroleum reservoir characterization is a process for quantitatively describing various reservoir properties in spatial variability using all the available field data. Porosity and permeability are the two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. These properties have a significant impact on petroleum fields operations and reservoir management. In un-cored intervals and well of heterogeneous formation, porosity and permeability estimation from conventional well logs has a difficult and complex problem to solve by conventional statistical methods. This paper suggests an intelligent technique using fuzzy logic and neural network to determine reservoir properties from well logs. Fuzzy curve analysis based on fuzzy logics is used for selecting the best related well logs with core porosity and permeability data. Neural network is used as a nonlinear regression method to develop transformation between the selected well logs and core analysis data. The intelligent technique is demonstrated with an application to the well data in offshore Korea. The results show that this technique can make more accurate and reliable properties estimation compared with previously used methods. The intelligent technique can be utilized a powerful tool for reservoir characterization from well logs in oil and natural gas development projects.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite (팔리고스카이트 내 수소 및 이산화탄소 나노공간한정)

  • Juhyeok Kim;Kideok D. Kwon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.

Rotor Polarity Detection Of Single-phase Permanent Magnet Synchronous Motor Based On Virtual dq-axis (가상 dq축 기반 단상 영구자석 동기 전동기 회전자 자극 검출)

  • Seo, Sung-Woo;Lee, Seon-Yeong;Kim, Han-Eol;Hwang, Seon-Hwan;Park, Jong-Won
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.435-436
    • /
    • 2020
  • 본 논문에서는 단상 영구자석 동기 전동기의 센서리스 운전을 위한 회전자 자극 검출 기법을 제안한다. 제안한 회전자 초기 자극 검출 방법은 비대칭 공극을 갖는 단상 영구자석 동기 전동기에 고주파 전압 및 옵셋 전류를 인가하여 회전자 자극 위치에 따른 전류 옵셋의 크기를 검출함에 있다. 이를 위해 가상의 dq축 모델을 이용한 고정자 전류의 크기를 비교하여 회전자 자극을 검출하고자 한다. 제안된 방법은 다수의 실험 결과를 통해 타당성을 입증하였다.

  • PDF

Effects of Orientation on Properties of Solid-State Extruded Polypropylene/Calcium Carbonate Composites (고상압출로 제조된 폴리프로필렌/탄산칼슘 복합재료의 물성에 미치는 배향의 영향)

  • Lee, Jaechoon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.175-182
    • /
    • 2013
  • In this work, we aim to investigate the specific gravity, thermal, and mechanical property changes of solid-state extruded polypropylene (PP)/calcium carbonate composites before and after orientation. For this work, we prepared $PP/CaCO_3$ composites having two different sizes (OM-1 and OM-10). On increasing the filler content, the specific gravity of the composites increases. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more microvoids. The presence of microvoids in case of oriented composite specimen significantly affected the tensile and flexural properties of the composites. It was observed that the effect of orientation on both flexural strength and modulus is much stronger than the effect of filler contents, regardless of the filler particle size.