• Title/Summary/Keyword: 공극시험

Search Result 427, Processing Time 0.032 seconds

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

Changes of Soil Physical Properties by Glomalin Concentration and Rice Yield using Different Green Manure Crops in Paddy (녹비작물 환원 시 Glomalin 함량에 따른 토양물리성 및 벼 수량 변화)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, Gye-Jeong;Oh, In-Seok;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.119-123
    • /
    • 2010
  • This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) in 2007 to 2008 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Three kinds of green manure crops (hairy vetch, barley, rye) incorporated in soil for rice cultivation. 6.3 kg N $10a^{-1}$, and3.2 kg $P_2O_5$ $10a^{-1}$ were applied to rye and barley plot before rice transplanting. Chemical fertilizers had not been applied to hairy vetch plot. Glomalin concentration, soil bulk density, and porosity were measured in soil from different green manure crops incorporation after rice harvesting in paddy. Soil bulk density and porosity after rice harvesting improved at surface soil of hairy vetch incorporation plot. Degree of water stable aggregates increased all green manure incorporation plots. Glomalin concentrations significantly increased at hairy vetch incorporation treatment. In barley plot, the concentration of glomalin increased at 10-20 soil depth. There were no differences relationship between soil carbon, and glomalin concentration, but relationship between soil aggregate stability, and glomalin concentration significantly positive under green manure crop-rice cropping system. Rice yield decreased at hairy vetch incorporation plot because of field lodging. We suggested that hairy vetch incorporation should be considered about application amount, and water management using rice cultivation because of soil properties changes.

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

Changes on Physical Property of Ilmenite due to Microorganism (미생물에 의한 티탄철석의 물리적 특성 변화)

  • Park, Young Ho;Kang, Dae Wan;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.321-329
    • /
    • 2012
  • Laboratory tests for measuring absorption, porosity, P-wave velocity and uniaxial compressive strength (UCS) were performed to examine weathering characteristics of ilmenite by microorganism. Physical property changes were quantitatively estimated with comparing culture period on the condition of abiotic oxidation without microorganism and biooxidation with microorganism. As a result, the measured pH during 45 days was distributed in the range from 3.82 to 4.26, on the other hand, biooxidation showed the range from 2.20 to 2.57. The measured absorption according to microorganism and culture period represented 0.052% at final stage in the case of abiotic oxidation and 0.073% in the case of biooxidation. Porosity showed 0.206% at final stage in the case of abiotic oxidation and 0.281% in the case of biooxidation. In general, the values by biooxidation showed higher than that by abiotic oxidation. Change range of P-wave velocity with culture period showed that the measured value as 1410 m/s at final stage in the case of biooxidation was lower than 1886 m/s of that in the case of abiotic oxidation. The UCS was decreased with increasing culture period in all specimens and represented 241.1 MPa at final stage in the case of abiotic oxidation and 140.0 MPa in the case of bioxidation. In conclusion, it implies that influence of physical property on ilmenite by biooxidation related with microorganism was larger than that by abiotic oxidation.

Rapid Chloride Penetration Test for Concrete Based on the Electrochemical Method (전기 영동법에 기초한 콘크리트의 급속 염소이온 확산 특성 평가)

  • Oh, Sang-Gyun;Park, Dong-Cheon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.787-792
    • /
    • 2010
  • It is necessary to predict the penetration of chloride ions for designing RC construction in marine environments. However, it takes a long time to obtain chloride migration coefficients. Therefore, the rapid chloride penetration test (RCPT) is generally used to shorten the test time. But there is a difference between chloride migration coefficients determined by rapid chloride penetration tests and those based on exposure in marine environments. In this study, we evaluated the effect on the chloride ion migration coefficient caused by a change in voltage and NaCl concentration. We also compared the relationship between the chloride ion migration coefficient by RCPT and that by exposure in marine environments. As a result of the experiments, we found that there is only a small change in the experimental factors based on changes in voltage and NaCl concentration and since they are so small, we can conclude that they are in the range of experimental error and test results from chloride ion migration coefficients by RCPT and exposure were very different from each other. In the exposure experiments, when the water-cement ratio was increased, the smaller fine air gaps in concrete affected the chloride ion migration coefficient.

Feasibility Study on Removal of Total Suspended Solid in Wastewater with Compressed Media Filter (압축성 여재 여과를 이용한 하수의 고형물질 제거 타당성 연구)

  • Kim, Yeseul;Jung, Chanil;Oh, Jeill;Yoon, Yeomin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.84-95
    • /
    • 2014
  • Recently, as a variety of techniques of CMF (Compressed media filter) that has advantages of high porosity and compressibility have been developed in the U.S. and Japan. Therefore, the interest of intensive wastewater treatment using CMF has grown. This study examined the feasibility of CMF with varying sewage water quality to determine the optimum operating conditions. A preliminary tracer test that investigated the filtering process under various compression and flow rate conditions was performed. In a high compression condition, different porosities were applied to each depth of the column. Therefore, a distinct difference between a theoretical value and results of tracer test was observed. For the TSS (Total suspended solid) removal and particle size distribution of CMF for pre-treatment water under the various compression conditions, the compression ratio of 30 percent as the optimal condition showed greater than 70% removal efficiency. In addition, the compression ratio of >15% was required to remove small-sized particles. Also, an additional process such as coagulation is necessary to increase the removal efficiency for < $10{\mu}m$ particles, since these small particles significantly influence the effluent concentration. Modeling results showed that as the compression rate was increased, TSS removal efficiency in accordance with each particle size in the initial filtration was noticeably observed. The modeling results according to the depth of column targeting $10{\mu}m$ particles having the largest percentage in particle size distribution showed that 150-300 mm in filter media layer was the most active with respect to the filtering.

Site Investigation for Pilot Scale $CO_2$ Sequestration by Magnetotelluric Surveys in Uiseong, Korea (이산화탄소 지중저장 Pilot 부지 선정을 위한 의성지역 MT 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Ko, Kwang-Beom;Hwang, Se-Ho;Park, Kwon-Gyu;Kim, Hyung-Chan;Park, Yong-Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.299-308
    • /
    • 2009
  • A magentotelluric (MT) survey at the Uiseong area has been performed for the site investigation of pilot scale $CO_2$ sequestration. The purpose of the MT survey is to delineate deeply extended fracture systems that can act as a leakage path of injected $CO_2$ Plume. Since the target area is extremely noisy in electromagentic sense, low frequency data below 1 Hz cannot be used for inversion. Two- and three-dimensional interpretation of the MT data showed a very clear conductive anomaly, which has the direction of $N55\sim65^{\circ}W$ and is extended roughly down to 1.6 km. It have the same direction with the strike-slip faults, the Gaeum and Geumcheon Faults. On the contrary, the eastern part of the survey area shows relatively homogeneous to the depth of 2 km though some small fractures at shallow depths can be found. Test drilling and high-definition borehole surveys should be followed at the eastern part of the survey area and hydraulic fracturing is required for injection of $CO_2$, because mean porosity of the sedimetary rock in the area is only 1.47%.

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Evaluation of Chloride Absorption in GGBS Concrete by Impedance Measurements (임피던스 측정을 통한 GGBS 콘크리트의 염화물 흡수 평가)

  • Kim, Jaehwan;Cho, Han-Min;You, Young-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.230-237
    • /
    • 2022
  • It is essential that service life of reinforced concrete structures in economic and safety aspects should be secured. It is well-known that chloride attack is a typical deterioration mechanism in field concrete structures. To prevent serious accidents like collapse, many studies have been conducted to increase resistance of chloride ingress using concrete mixed with GGBS. The usage of GGBS concrete is nowadays mandatory. Since most concretes in the field are unsaturated, study regarding chloride absorption is necessary, but many studies have focused on the chloride diffusion phenomenon. Methods for evaluating chloride absorption are cost and improper in the field. It is necessary to develop a simple method for evaluating chloride absorption in practice. This study evaluated resistance of chloride ingress in GGBS concretes with impedance measurement and absorption test. From the results, it was confirmed that the contents of absorbed chloride were linearly correlated with the measured electrical resistivities (or conductivities) in the concrete. At the end of the test, the electrical conductivities were 250.8 S/m (w/b=0.4) and 303.1 S/m (w/b=0.6) for PC concretes, and 2.6 S/m (w/b=0.4) and 64.4 S/m (w/b=0.6) for GGBS concretes, respectively. Considering influencing factors for chloride absorption and impedance measurement, chloride ingress into concrete is mainly affected by pore structures due to replacement of GGBS. Especially, formations of pore structure are different with binder, thereby binders should be considered in building reinforced concrete structures exposed to chloride environments.

Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates (화강암 골재를 이용한 아스팔트 혼합물의 동탄성 계수 예측방정식)

  • Lee, Kwan-Ho;Kim, Hyun-O;Jang, Min-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.425-433
    • /
    • 2006
  • The presented work provided a predictive equation for dynamic modulus of hot mix asphalt, which showed higher reliability and more simplicity. Lots of test result by UTM at laboratory has been used to develop the precise predictive equation. Evaluation of dynamic modulus for 13mm and 19mm surface course and 25mm of base course of hot mix asphalt with granite aggregate and two asphalt binders (AP-3 and AP-5) were carried out. Superpave Level 1 Mix Design with gyrator compactor was adopted to determine the optimum asphalt binder content (OAC) and the measured ranges of OAC were between 5.1% and 5.4% for surface HMA, and around 4.2% for base HMA. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature (-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies (0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The effect of each parameter for equation has been compared. Due to the limitation of laboratory tests, the reliability of predictive equation for dynamic modulus is around 80%.