• Title/Summary/Keyword: 공구 런아웃

Search Result 20, Processing Time 0.023 seconds

A Study on the Relationship of Surface Shape and Tool Runout in the Ball-End Milling (경사면 가공에서 공구의 런아웃과 표면 형상과의 관계에 관한 연구)

  • 박희범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.591-596
    • /
    • 1999
  • Due to the development of CNC machining centers and the complexity of machined part geometry, the ball-end milling became the most widely used the cutting process. Generally, the tool runout defined as the eccentricity of a rotating tool set in the holder involved the spindle runout and the problem of tool runout generated to remove the workpiece is a main factor affecting the machining accuracy. In this paper, the relationship of tool runout(zero-to-peak, P-K) and surface shape on the change of cutting conditions is studied and it is proposed the probability of prediction of surface shape from the in-process tool runout measurements with high response displacement sensor in the ball-end milling

  • PDF

엔드밀 가공시 표면형성 예측 시뮬레이터 개발

  • 이영구;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.263-263
    • /
    • 2004
  • 엔드밀 가공 공정은 항공산업과 자동차 부품 및 금형 가공 산업에서 널리 사용되고 있다. 정형가공 (near net shape) 기술의 발달에 따라 금형 가공시 허용공차 이내로 표면 오차를 유지하면서 가공시간을 감소시킬 필요성이 증대되었고 이에 따라, 절삭과정을 정확히 나타냄으로써 최종표면 형상을 정확히 예측할 수 있는 절삭모델을 통해 표면형성 예측 시뮬레이터의 개발 필요성이 있어왔다. 본 논문에서는 주어진 절삭조건에서 공구의 처짐과 런아웃을 고려한 절삭력 모델에 대하여 절삭력과 표면형성 데이터를 코딩된 포트란 프로그램에서 얻고 이것을 MFC와 연동시켜 예측 결과를 쉽게 확인할 수 있는 초보단계의 시뮬레이터 개발에 대하여 연구하였다.(중략)

  • PDF

Investigation of Surface Roughness Characteristics according to Tool Runout Variations in Side Milling Cutter for Worm Screw (사이드 밀링 커터를 이용한 워엄 스크루 가공에서 공구 런아웃이 표면조도에 미치는 영향분석)

  • Kim, Sun Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-82
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear motion. For mass production of a high quality worm, the current roll forming process is substituted with the milling cutter process. Since the milling cutter process enables the integration of all machining operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. The tooling system for side milling cutter on the CNC lathe to improve machinability is developed. However, the runout of spindle and cutting tips are important factors to be considered for producing high quality worms because the tooling system has multiple tips. In this study, surface roughness variations accuracy according to runout was investigated in side milling cutter for worm screw. The result shows by simulation and experiment.

  • PDF

Cutter Runout Parameter Estimation in Ball-End Milling (볼엔드밀 가공에서 공구 런아웃 매개변수 검출)

  • 김창주;김성윤;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.171-178
    • /
    • 2000
  • In this study, an indirect method to estimate the setup runout of a ball-end mill from cutting force signal is proposed. This runout makes cutting forces of each tooth of the milling cutter unequal. By transforming the cutting force model from time domain to frequency domain through time-convolution theorem, the magnitude and phase angle of runout can be explicitly expressed with material constants, cutting conditions, and force signal. The static setup runout can be obtained by extrapolating estimated effective runout, which is independent of feedrate but decreases linearly with increase in axial depth of cut. The setup runout estimated by slot cutting experiments, shows good agreement with the measured one.

  • PDF

A Study on Evaluation of Machinability using cuter Runout in Ball-end Milling (볼엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구)

  • Kim, Byoung-Kook;Park, Hee-Bum;Lee, Deug-Woo;Kim, Jeong-Suk;Jung, Yoong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.35-44
    • /
    • 1999
  • The performance of interrupted cutting operations like milling is consideraly affected by cuter runout. In this study, cutter runout is selected as an important machining parameter for evaluation of machinability in ball-end milling and caused from misalignments of tool and holder, unbalanced mass of parts and tool deflection under machining. To evaluate the machinability due to cutter runout, the rotating accuracy of spindle, cutting force and surface roughness are measured. The rotating characteristics of spindle in each revolution speed were investigated by cutter runout in freeload. The predicted surface form of workpiece by measuring cutter runout data was compared with real surfaces. The results show that measuring runout with high response gap sensor is useful for studying the phenomenon of high-speed machining and the monitor surface form using in-process runout measurements in ball-end milling is possible.

  • PDF

A Study on the Manufacturing Characteristics for Micro Spherical Lens Mold of Soft Materials (연질재료의 마이크로 구형렌즈금형 가공특성에 관한 연구)

  • 홍성민;이동주;제태진;최두선;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1466-1469
    • /
    • 2004
  • Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds $\mu$m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material.

  • PDF

Effects of cutter runout on end milling forces I -Up and milling- (엔드밀링 절삭력에 미치는 공구형상오차 I -상향 엔드밀링-)

  • 이영문;최원식;송태성;권오진;백승기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.985-988
    • /
    • 1997
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study ,a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. Size effect was identified from the analysis of specific cutting resistance obtained by using the modified undeformed chip section area.

  • PDF

Tool Fracture Detection in Milling Process (I) -Part 1 : Development of Tool Fracture Index- (밀링 공정시 공구 파손 검출 (I) -제1편 : 공구 파손 지수의 도출-)

  • 김기대;오영탁;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.100-109
    • /
    • 1998
  • In order to increase productivity through unmanned machining in CNC milling process, in-process tool fracture detection is required. In this paper, a new algorithm for tool fracture detection using cutting load variations was developed. For this purpose, developed were tool condition vector which is dimensionless indicator of cutting load and tool fracture index (TFI) which represents magnitude of tool fracture. Through cutting force simulation, tool fracture index was shown to be independent of tool run-outs and cutting condition variations. Using tool fracture index, the ratio of the tool fracture to feed per tooth could be indentified.

  • PDF

Effects of cutter runout on cutting forces during up-endmilling of Inconel718 (Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;김선일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.302-307
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during up-end milling of Inconel 718 using measured cutting forces. The specific cutting resistance, K. and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area. Both of $K_r$, and $K_t$ values become smaller as the helix angle increases from $30^\circ$ to $40^\circ$ Whereas they become larder as the helix angle increases from $40^\circ$ to $50^\circ$. On the other hand, the $K_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

  • PDF

Effects of cutter runout on cutting forces during down-endmilling of Inconel718 (Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;이동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF