• 제목/요약/키워드: 공구오차

검색결과 95건 처리시간 0.024초

Machining Center의 2차원 원호절삭정도 자동진단 System의 개발에 관한 연구

  • 김정순;남궁석;제정신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.9-12
    • /
    • 1992
  • 지금까지 공작기계의 성능은 주로 기하학적 운동정도, 위치결정정도, 공작정도등의 시험 및 검사에의해 평가되어왔다. 그러나, 공작기계의 수치제어 System으로서의 평가는 충분히 행히지고있지 않았다. 원호절삭 정도시험으로서 Direct Test법은 공작물을 직접절삭하기 때문에공구나, 공작물의 영향을 받아서 공작기계의 운동정도만을 검사하는 것은 곤란하다. 그래서 직접 절삭하지않고 원호절삭 원동정도를 평가할 수 있는 방법으로서 Circular test법과 Double Ball Bar법이 개발 되어 사용되고 있다. 본 연구에서는 상술한 2가지 방법의 대체 방법으로 간단하고 값싸게 제작할 수 있는 새로운 원호절삭 정도측정장치와 측정 system을 개발하여 이 측정기로측정한 원호형상과 Machining Center의 운동오차 요인과의 정량적으로 고찰하였다.

신경망을 이용한 선삭가공 시 Chatter vibration의 감시 (Using Neural Network Approach for Monitoring of Chatter Vibration in Turning Operations)

  • 남용석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.28-33
    • /
    • 2000
  • The monitoring of the chatter vibration is necessarily required to do automatic manufacturing system. To this study, we constructed a sensing system using tool dynamometer in order to the chatter vibration on cutting process. And a approach to a neural network using the feature of principal cutting force signals is proposed. with the error back propagation training process, the neural network memorized and classified the feature of principal cutting force signals. As a result, it is shown by neural network that the chatter vibration can be monitored effectively.

  • PDF

엔드밀에 의한 슬롯가공의 최적화에 관한 연구 (A Study on the Optimization of Slot Cut in the End Milling Processes)

  • 최종근;김형선
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.38-43
    • /
    • 2006
  • A slot cut in end milling processes is one of the laborious works because the cutting force is likely to deflect the tools excessively, then to make large errors or to fracture the tool. This difficulty is owing to the poor stiffness of slender shaped end mills. Though, in most cases, additional finish cuts are followed after rough cuts, the accuracy of rough cuts is still important because it affects the final accuracy after finish cuts and productivity. The accuracy in slot cuts depends on the tool stiffness and the cutting conditions including depth of cut and feed. In order to meet the desired accuracy, diameter of end mill and cutting allowance have to be selected carefully. This study suggests several guidances for selecting the end mill diameter and the slot cut allowance to improve machining accuracy and productivity in slot end millings. Some experiments were done with the various cutting parameters of tool diameter, depth of cut and feed.

비구면 렌즈의 생산성 향상을 위한 최적가공조건선정 (Selection of optimal machining condition for productivity enhancement of aspheric surface lens)

  • 백승엽;이해동;김성철;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF

실험계획법과 유한 요소해석을 이용한 초정밀 대면적 미세 그루빙 머신의 변위 오차 예측 (Displacement Error Estimation of a High-Precision Large-Surface Micro-Grooving Machine Based on Experimental Design Method and Finite Element Analysis)

  • 이희범;이원재;김석일
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.703-713
    • /
    • 2011
  • In this study, to minimize trial and error in the design and manufacturing processes of a high-precision large-surface micro-grooving machine which is able to fabricate the molds for 42 inch LCD light guide panels, the effects of the structural deformation of the micro-grooving machine according to the positions of the X-axis, Y-axis and Z-axis feed systems were examined on the tool tip displacement errors associated with the machining accuracy. The virtual prototype (finite element model) of the micro-grooving machine was constructed to include the joint stiffnesses of the hydrostatic bearings, hydrostatic guideways and linear motors, and then the tool tip displacement errors were measured from the virtual prototype. Especially, to establish the prediction model of the tool tip displacement errors, which was constructed using the positions of the X-axis, Y-axis and Z-axis feed systems as independent variables, the response surface method based on the central composite design was introduced. The reliability of the prediction model was verified by the fact that the tool tip displacement errors obtained from the prediction model coincided well those measured from the virtual prototype. And the causes of the tool tip displacement errors were identified through the analysis of interactions between the positions of the X-axis, Y-axis and Z-axis feed systems.

엔드밀 가공의 정밀도 향상을 위한 최적정삭여유에 관한 연구 (A Study on the Optimum Finish Allowance for Machining Accuracy Improvement in the End Milling Processes)

  • 최종근;김형선;김성초
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.8-15
    • /
    • 2004
  • A significant error in the end milling processes is generated due to using slender tools of which the strengths are not sufficient. In order to obtain the desired machining accuracy, therefore, it is general that at first the rough cut is implemented, then the finish cut is followed. The rough cut eliminates large volume and the finish cut does the remained part. This remaining portion after the rough cut is called as the finish allowance. Larger finish allowances make it hard to get precise dimensions at a following finish cut. Smaller finish allowances are helpful for good dimension, but it sometimes is responsible for inferior surface qualities and over cuts. This study suggests a guidance for the optimum finish allowance for machining accuracy improvement, in which the rough cuts are regulated to remain the desired margins without any over cuts. Some experiments were carried out with various cutting conditions including the change of tool strengths and depth of cuts, and also extended to up millings as well as down millings.

공구와 공작물의 상대적 변형량 예측을 위한 해석모델 개발에 관한 연구 (A Study on the Development of Analysis Model for Prediction of Relative Deformation between Cutting Tool and Workpiece)

  • 이문재;황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.20-26
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. This paper presents an investigation into dry and fluid machining with the objective of evaluating shape accuracy effect for the turning process of Al6061. The thermal distribution of cutting tool and cutting force was predicted using finite element method after measuring the temperature of the tool holder. To reach this goal, shape accuracy turning experiments are carried out according to cutting conditions with dry and fluid machining methods. The variable cutting conditions are cutting speed, depth of cutting and feed rate.

평 엔드밀을 이용한 평면가공에서의 가공면 형성기구 (Plane Surface Generation with a Flat End Mill)

  • 류시형;김민태;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

장공 터널발파에서 Emulsion폭약의 시공사례와 적용성에 관한 연구 (A Case Study of Application of the Emulsion Explosives in Long Hole Tunnel Blasting)

  • 조영곤;김희도;이상돈
    • 화약ㆍ발파
    • /
    • 제19권1호
    • /
    • pp.31-40
    • /
    • 2001
  • 일반적으로 장공발파(長孔發破) 방법(Long hole blasting method)은 그동안 주로 대규모 채탄막장이나 댐 기초굴착, 광산 등에서 행하여져 왔으나 최근 토목터널에서 시공 효율성 및 경제성을 목적으로 관심이 높아지고 있다. 기존의 터널설계 패턴은 I -Type을 기준으로 3.5~3.8m 천공이며 신공법 적용시 최대 4.Om까지 설계되는 것이 보통이었다. 과거 착암장비는 천공장이 늘어남으로서 슬러지에 의한 천공속도가 저하되어 천공비가 증가하기 때문에 빠른 슬러지 배제가 필요하고 Rod의 휨 현상에 의한 천공오차의 증대를 초래할 수 있는 단점이 있었다. 그러나 최근 장비의 발달로 인하여 천공각도 및 천공장 등을 Computer로 모니터링하여 제어할 수 있어 정밀한 천공이 가능하여 졌고 또한, 고성능 에멀젼계 폭약(Super Emulsion)의 개발로 그동안 극 경암터널에서 에멀젼계 폭약의 단점으로 여겨졌던 비 장약량의 증대와 사압현상의 발생, 굴진효율 저하문제론 극복할 수 있었다. 따라서 본 연구는 현재 건설중인 대상현장을 중심으로 장공 터널발파의 효율성과 경제성을 분석하고 나아가 암질에 따른 새로운 Type별 설계기준을 마련하는 기초자료로서 활용하고자 하였다. 된 연구의 대상현장은 충북 괴산군 영풍면 소재 중부내륙(여주-구미간) 고속도로 제 9공구 이화터널 건설공사현장으로 $\varphi{102mm}$ 무 장약공 Cylinder 4공을 이용한 심발법을 사용하였으며 천공장은 최대 5.0m로 2000년 11일 15일에서 동년 12월 15일까지 31일간 총 112회의 시험발파를 실시하여 평균 92%의 높은 굴진 효율을 기록하였다.

  • PDF

수전달 진동평가량의 랜덤오차 저감을 위한 공구 핸들에서의 진동과 작용력의 동시 측정 (Simultaneous Measurement of Vibration and Applied Forces at a Power Tool Handle for the Reduction of Random Error When valuating Hand-transmitted Vibration)

  • 최석현;장한기;박태원
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.404-411
    • /
    • 2005
  • To increase accurateness and reliability of the evaluation of power tool vibration transmitted to an operator, it is necessary to measure the grip and feed forces during the measurement of hand-transmitted vibration. In the study a system was invented to measure the vibration and the grip and/or feed force, which consists of a measurement handle and a PC with a data acquisition system and the corresponding software. Strain gauges and an accelerometer were mounted on the handle surface for the simultaneous measurement of the forces and the vibration. The program in the system makes it possible to monitor the grip and feed force during the tool operation so that the operator keeps the applying forces within the pre-determined range. Investigating the vibration total values, frequency-weighted root-mean-square accelerations at the handle, obtained in repetition for each power tool with control of the grip and feed force showed more consistency than those measured without force control. By using the system the experimenter can reduce random error of the measured vibration.