• Title/Summary/Keyword: 공간 영상

Search Result 5,073, Processing Time 0.043 seconds

A study on discharge estimation for the event using a deep learning algorithm (딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구)

  • Song, Chul Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

A Case Study of Successful Strategy for Self-Directed Learning Center of Educational Service Franchise - Focusing on the Case of Learning Center of Daekyo Noonnoppi - (교육 서비스 프랜차이즈의 자기주도 학습관 사업화 사례연구 - 대교 눈높이 러닝센터 사례를 중심으로 -)

  • Yoo, Dong-Keun;Hong, Jong-Pil;Hwang, Jae-Kwang
    • The Korean Journal of Franchise Management
    • /
    • v.5 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • The purpose of this work is to analyze successful business strategy of Daekyo Noonnoppi. Daekyo Noonnoppi, a franchise company of educational service, activated education business by establishing new way of providing education opportunity: self-directed learning center. They introduced not only the concept of learning center but also sustainable business strategies, which leads to remarkable success in the education business field. Daekyo Noonnoppi deployed three managerial concepts for study achievement: goal management, study management, and environment management. This Franchise company has three advantages of its success: Goal, Study and environment management: First, the goal management helps students to develop self-directed attitudes by making(appropriate) atmosphere which is able to build study goal and plan. In addition, this company provides information to their students to searches ways of study through the test reflecting their tendency. Furthermore, this company offers a variety of events for motivating study. Second, study management is helpful for students to develop holistic fundamental knowledge through its textbooks of this company and provides solutions and time management for study through 1 on 1 study advice. Third, environment management is used to making atmosphere to develop self-directed learning way for its students and provides spaces for students equipped with multimedia systems and cyber learning infrastructures.

Remote Sensing based Algae Monitoring in Dams using High-resolution Satellite Image and Machine Learning (고해상도 위성영상과 머신러닝을 활용한 녹조 모니터링 기법 연구)

  • Jung, Jiyoung;Jang, Hyeon June;Kim, Sung Hoon;Choi, Young Don;Yi, Hye-Suk;Choi, Sunghwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.42-42
    • /
    • 2022
  • 지금까지도 유역에서의 녹조 모니터링은 현장채수를 통한 점 단위 모니터링에 크게 의존하고 있어 기후, 유속, 수온조건 등에 따라 수체에 광범위하게 발생하는 녹조를 효율적으로 모니터링하고 대응하기에는 어려운 점들이 있어왔다. 또한, 그동안 제한된 관측 데이터로 인해 현장 측정된 실측 데이터 보다는 녹조와 관련이 높은 NDVI, FGAI, SEI 등의 파생적인 지수를 산정하여 원격탐사자료와 매핑하는 방식의 분석연구 등이 선행되었다. 본 연구는 녹조의 모니터링시 정확도와 효율성을 향상을 목표로 하여, 우선은 녹조 측정장비를 활용, 7000개 이상의 녹조 관측 데이터를 확보하였으며, 이를 바탕으로 동기간의 고해상도 위성 자료와 실측자료를 매핑하기 위해 다양한Machine Learning기법을 적용함으로써 그 효과성을 검토하고자 하였다. 연구대상지는 낙동강 내성천 상류에 위치한 영주댐 유역으로서 데이터 수집단계에서는 면단위 현장(in-situ) 관측을 위해 2020년 2~9월까지 4회에 걸쳐 7291개의 녹조를 측정하고, 동일 시간 및 공간의 Sentinel-2자료 중 Band 1~12까지 총 13개(Band 8은 8과 8A로 2개)의 분광특성자료를 추출하였다. 다음으로 Machine Learning 분석기법의 적용을 위해 algae_monitoring Python library를 구축하였다. 개발된 library는 1) Training Set과 Test Set의 구분을 위한 Data 준비단계, 2) Random Forest, Gradient Boosting Regression, XGBoosting 알고리즘 중 선택하여 적용할 수 있는 모델적용단계, 3) 모델적용결과를 확인하는 Performance test단계(R2, MSE, MAE, RMSE, NSE, KGE 등), 4) 모델결과의 Visualization단계, 5) 선정된 모델을 활용 위성자료를 녹조값으로 변환하는 적용단계로 구분하여 영주댐뿐만 아니라 다양한 유역에 범용적으로 적용할 수 있도록 구성하였다. 본 연구의 사례에서는 Sentinel-2위성의 12개 밴드, 기상자료(대기온도, 구름비율) 총 14개자료를 활용하여 Machine Learning기법 중 Random Forest를 적용하였을 경우에, 전반적으로 가장 높은 적합도를 나타내었으며, 적용결과 Test Set을 기준으로 NSE(Nash Sutcliffe Efficiency)가 0.96(Training Set의 경우에는 0.99) 수준의 성능을 나타내어, 광역적인 위성자료와 충분히 확보된 현장실측 자료간의 데이터 학습을 통해서 조류 모니터링 분석의 효율성이 획기적으로 증대될 수 있음을 확인하였다.

  • PDF

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.

A Case Study on Field Campaign-Based Absolute Radiometric Calibration of the CAS500-1 Using Radiometric Tarp (Radiometric Tarp를 이용한 현장관측 기반의 차세대중형위성 1호 절대복사보정 사례 연구)

  • Woojin Jeon;Jong-Min Yeom;Jae-Heon Jung;Kyoung-Wook Jin;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1273-1281
    • /
    • 2023
  • Absolute radiometric calibration is a crucial process in converting the electromagnetic signals obtained from satellite sensors into physical quantities. It is performed to enhance the accuracy of satellite data, facilitate comparison and integration with other satellite datasets, and address changes in sensor characteristics over time or due to environmental conditions. In this study, field campaigns were conducted to perform vicarious calibration for the multispectral channels of the CAS500-1. Two valid field observations were obtained under clear-sky conditions, and the top-of-atmosphere (TOA) radiance was simulated using the MODerate resolution atmospheric TRANsmission 6 (MODTRAN 6) radiative transfer model. While a linear relationship was observed between the simulated TOA radiance of tarps and CAS500-1 digital numbers(DN), challenges such as a wide field of view and saturation in CAS500-1 imagery suggest the need for future refinement of the calibration coefficients. Nevertheless, this study represents the first attempt at absolute radiometric calibration for CAS500-1. Despite the challenges, it provides valuable insights for future research aiming to determine reliable coefficients for enhanced accuracy in CAS500-1's absolute radiometric calibration.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

A Study of Image Quality and Exposed Dose by Field Size Changing on CBCT (CBCT 촬영 시 조사야 조절에 따른 영상의 최적화 및 피폭선량에 관한 고찰)

  • Bang, Seung Jae;Kim, Young Yeon;Jeong, Il Seon;Kim, Jeong Soo;Kim, Young Gon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.175-180
    • /
    • 2013
  • Purpose: Modern radiation therapy technique such as IGRT has become a routine clinical practice on LINAC for decrease patient's set-up error. CBCT can be used to adjust patient set-up error and treat patient more accurately. The Purpose of this study is to evaluate field size of CBCT for improving Image quality and suggest reference date of CBCT field size. Materials and Methods: Image date were acquired using KV CBCT and Catphan phantom (Half fan and full fan mode were scanned from 2 ~16 cm, at intervals of 2 cm). Field size were categorized by Small field size (2 cm, 4 cm), Medium field size (8 cm, 10 cm), Large field size (more than 14 cm) and evaluate. To estimated the CTDi using CTDi phantom and Ion chamber. Results: CT number linearity of Small and Large field size are greater than Medium field size. Spatial resolution are not significantly different without Small field size. But half fan mode is more different than full fan mode. In full fan, except Medium field size, all field size exceed recommendation for HU uniformity. But half pan has stability for all field except Small field size. CTDi makes radical sign function graph in Medium field size. Conclusion: The worst result was given by Small field size for Image quality and practically. Medium field size can be useful to prevent patient from radiation exposure and give better Image quality. So this study recommends that Medium field size (8~10 cm) is more suitable for CBCT.

  • PDF