• Title/Summary/Keyword: 공간 영과잉 포아송모형

Search Result 2, Processing Time 0.025 seconds

Zero In ated Poisson Model for Spatial Data (영과잉 공간자료의 분석)

  • Han, Junhee;Kim, Changhoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.231-239
    • /
    • 2015
  • A Poisson model is the first choice for counts data. Quasi Poisson or negative binomial models are usually used in cases of over (or under) dispersed data. However, these models might be unsuitable if the data consist of excessive number of zeros (zero inflated data). For zero inflated counts data, Zero Inflated Poisson (ZIP) or Zero Inflated Negative Binomial (ZINB) models are recommended to address the issue. In this paper, we further considered a situation where zero inflated data are spatially correlated. A mixed effect model with random effects that account for spatial autocorrelation is used to fit the data.

Heat-Wave Data Analysis based on the Zero-Inflated Regression Models (영-과잉 회귀모형을 활용한 폭염자료분석)

  • Kim, Seong Tae;Park, Man Sik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2829-2840
    • /
    • 2018
  • The random variable with an arbitrary value or more is called semi-continuous variable or zero-inflated one in case that its boundary value is more frequently observed than expected. This means the boundary value is likely to be practically observed more than it should be theoretically under certain probability distribution. When the distribution considered is continuous, the variable is defined as semi-continuous and when one of discrete distribution is assumed for the variable, we regard it as zero-inflated. In this study, we introduce the two-part model, which consists of one part for modelling the binary response and the other part for modelling the variable greater than the boundary value. Especially, the zero-inflated regression models are explained by using Poisson distribution and negative binomial distribution. In real data analysis, we employ the zero-inflated regression models to estimate the number of days under extreme heat-wave circumstances during the last 10 years in South Korea. Based on the estimation results, we create prediction maps for the estimated number of days under heat-wave advisory and heat-wave warning by using the universal kriging, which is one of the spatial prediction methods.