• Title/Summary/Keyword: 공간평가

Search Result 7,085, Processing Time 0.038 seconds

The Study of Influence on Reducing Exposure Dose According to the Applied Flat-panel CT in Extremity Bone SPECT/CT (상·하지 뼈 SEPCT/CT 검사에서 평판형 CT의 피폭저감 영향에 관한 고찰)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: With the demand of SPECT/CT increasing, the interest in complex diagnostic information of CT is rising along with the expansion of various studies on potential performance value. But the study on reduction of exposure dose generated by CT is not being conducted enough. Therefore, in this study, the goal is to identify how much dose reduction exists when performing the extremity bone SPECT/CT using the flat-panel CT. Materials and Methods: The extremity bone SPECT/CT was performed with two equipments -BrightView XCT (Philips Healthcare, Cleveland, USA) and Brilliance 16 CT (Philips Healthcare, Cleveland, USA)-to identify the exposed dose and image quality resulted by changing scan parameter (mAs) applying for both equipment respectively. The noise value of image and spatial resolution were measured with AAPM CT phantom. Tube voltage (kVp) was fixed to 120 kVp, tube current (mAs) calculated at different mA (20, 30, 40, 50, 60, 70, 80) was applied to both equipments respectively. DLP (dose length product) were calculated at the same distance at respective mAs. Also, we acquired images and % contrast with NEMA IEC body phantom to confirm the effect on image. The output of statistics was analyzed by SPSS ver.18. Results: Regarding AAPM phantom, the noise decreased as the tube current (mAs) increased and flat-panel had less noise than Helical CT. This difference increased at lower dose exposure. As to the evaluation of spatial resolution, we can differentiate the space up to 0.75 mm with both equipments. With scan parameter (mA) growing, the value of DLP increased up to 54-216 mGy cm at flat-panel CT and up to 177-709 mGy cm at Helical CT. Regarding NEMA IEC body phantom, same sphere with varied parameter (mA) shows that similar results. Conclusion: There is no significant differences of image quality in both flat-panel and Helical CT when the scan parameter (mA) is changed respectively. Moreover, we can identify the reduction of exposure dose and confirm %contrast analysis value with maintaining image quality. Therefore, at the extremity bone SPECT/CT requiring high spital resolution without the wide ROI, the flat-panel CT is considered to be more useful and it expected to result in the similar image quality with lower exposure dose compared to Helical CT. Additionally, through this study, we expect to help the reduction of the unnecessary exposure dose.

  • PDF

Trend and future prospect on the development of technology for electronic security system (기계경비시스템의 기술 변화추세와 개발전망)

  • Chung, Tae-Hwang;So, Sung-Young
    • Korean Security Journal
    • /
    • no.19
    • /
    • pp.225-244
    • /
    • 2009
  • Electronic security system is composed mainly of electronic-information-communication device, so system technology, configuration and management of the electronic security system could be affected by the change of information-communication environment. This study is to propose the future prospect on the development of technique for electronic security system through the analysis of the trend and the actual condition on the development of technique. This study is based on literature study and interview with user and provider of electronic security system, also survey was carried out by system provider and members of security integration company to come up with more practical result. Hybrid DVR technology that has multi-function such as motion detection, target tracking and image identification is expected to be developed. And 'Embedded IP camera' technology that internet server and image identification software are built in. Those technologies could change the configuration and management of CCTV system. Fingerprint identification technology and face identification technology are continually developed to get more reliability, but continual development of surveillance and three-dimension identification technology for more efficient face identification system is needed. As radio identification and tracking function of RFID is appreciated as very useful for access control system, hardware and software of RFID technology is expected to be developed, but government's support for market revitalization is necessary. Behavior pattern identification sensor technology is expected to be developed and could replace passive infrared sensor that cause system error, giving security guard firm confidence for response. The principle of behavior pattern identification is similar to image identification, so those two technology could be integrated with tracking technology and radio identification technology of RFID for total monitoring system. For more efficient electronic security system, middle-ware's role is very important to integrate the technology of electronic security system, this could make possible of installing the integrated security system.

  • PDF

A Study on The RFID/WSN Integrated system for Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경을 위한 RFID/WSN 통합 관리 시스템에 관한 연구)

  • Park, Yong-Min;Lee, Jun-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.31-46
    • /
    • 2012
  • The most critical technology to implement ubiquitous health care is Ubiquitous Sensor Network (USN) technology which makes use of various sensor technologies, processor integration technology, and wireless network technology-Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN)-to easily gather and monitor actual physical environment information from a remote site. With the feature, the USN technology can make the information technology of the existing virtual space expanded to actual environments. However, although the RFID and the WSN have technical similarities and mutual effects, they have been recognized to be studied separately, and sufficient studies have not been conducted on the technical integration of the RFID and the WSN. Therefore, EPCglobal which realized the issue proposed the EPC Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPCglobal network. The proposed EPC Sensor Network technology uses the Complex Event Processing method in the middleware to integrate data occurring through the RFID and the WSN in a single environment and to interoperate the events based on the EPCglobal network. However, as the EPC Sensor Network technology continuously performs its operation even in the case that the minimum conditions are not to be met to find complex events in the middleware, its operation cost rises. Moreover, since the technology is based on the EPCglobal network, it can neither perform its operation only for the sake of sensor data, nor connect or interoperate with each information system in which the most important information in the ubiquitous computing environment is saved. Therefore, to address the problems of the existing system, we proposed the design and implementation of USN integration management system. For this, we first proposed an integration system that manages RFID and WSN data based on Session Initiation Protocol (SIP). Secondly, we defined the minimum conditions of the complex events to detect unnecessary complex events in the middleware, and proposed an algorithm that can extract complex events only when the minimum conditions are to be met. To evaluate the performance of the proposed methods we implemented SIP-based integration management system.

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Assessment of Regional Nitrogen Loading of Animal Manure by Manure Units in Cheorwon-gun (분뇨단위 설정에 의한 철원군 지역의 가축분뇨 질소부하 평가)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This study was conducted to give basic information of the animal manure management by manure units determination for recycling farming in Cheorwon-gun. Manure units (MU) are used in the permitting, registration, and the environmental process because they allow equal standards for all animals based on manure nutrient production. An MU is calculated by multiplying the number of animals by manure unit factor for the specific type of animal. The manure unit factor for MU determination was determined by dividing amounts of manure N produced 80 kg N/year. Conversion to manure units is a procedure used to determine nutrient pollution equivalents among the different animal types. In this study, the manure unit factor based on nitrogen in Hanwoo, dairy cow, pig were 0.36, 0.8 0.105, respectively. The analysis of manure unit per ha shows that the N loading by MU is quite different by region. The nitrogen loading of manure unit (MU) per ha of cultivated land was the highest in the Galmal-eup on province with 2.4 MU/ha, which is higher than the appropriate level. The Seo-myeon province came next with 1.92 MU/ha. To be utilized as a valid program to build the recycling farming system, diverse measures shall be mapped out to properly determine manure units, evaluate N-loading and to properly manage their nutrient balance of each region.

The Discriminating Nature of Dopamine Transporter Image in Parkinsonism: The Competency of Dopaminergic Transporter Imaging in Differential Diagnosis of Parkinsonism: $^{123}I-FP-CIT$ SPECT Study (도파민운반체 영상의 파킨슨증 감별진단 성능: $^{123}I-FP-CIT$ SPECT 연구)

  • Kim, Bom-Sahn;Jang, Sung-June;Eo, Jae-Seon;Park, Eun-Kyung;Kim, Yu-Kyeong;Kim, Jong-Min;Lee, Won-Woo;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.272-279
    • /
    • 2007
  • Purpose: The aim of this study was to evaluate the discriminating nature of $^{123}I-FP-CIT$ SPECT in patients with parkinsonism. Methods: $^{123}I-FP-CIT$ SPECT images acquired from the 18 normal controls; NC ($60.4{\pm}10.0$ yr) and 237 patients with parkinsonism ($65.9{\pm}9.2$ yr) were analyzed. From spatialIy normalized images, regional counts of the caudate, putamen, and occipital lobe were obtained using region of interest method. Binding potential (BP) was calculated with the ratio of specific to nonspecific binding activity at equilibrium. Additionally, the BP ratio of putamen to caudate (PCR) and asymmetric Index (ASI) were measured. Results: BPs of NC $3.37{\pm}0.57,\; 3.10{\pm}0.41,\; 3.23{\pm}0.48$ for caudate, putamen, whole striatum, respectively) had no significant difference with those of essential tremor; ET ($3.31{\pm}0.64,\; 3.06{\pm}0.61,\; 3.14{\pm}0.63$) and Alzheimer's disease; AD (3.33 $\pm$0.60, 3.29$\pm$0.79, 3.31$\pm$0.70), but were higher than those of Parkinson's disease; PD (1.92$\pm$0.74, 1.39$\pm$0.68, 1.64$\pm$0.68), multiple system atrophy; MSA (2.36$\pm$1.07, 2.16$\pm$0.91, 2.26$\pm$0.96), and dementia with Lewy body; DLB (1.95$\pm$0.72, 1.64$\pm$0.65, 1.79$\pm$0.66)(p<0.005). PD had statisticalIy lower values of PER and higher values of ASI than those of NC (p<0.005). And PD had significantIy lower value of PCR, higher ASI and lower BP in the putamen and whole striatum than MSA (p<0.05). Conclusion: Dopamine transporter image of $^{123}I-FP-CIT$ SPECT was a good value in differential diagnosis of parkinsonism.

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.