• Title/Summary/Keyword: 공간전하분극

Search Result 23, Processing Time 0.017 seconds

A study on the structural changes and the TSC characteristics of epoxy composites cured with acid-anhydride (산무수물 경화된 에폭시 복합체의 구조변화와 TSC특성에 관한 연구)

  • 왕종배;이준웅
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 1994
  • In this study, the TSC spectroscopy has been applied to investigate the influence of structural change due to a process of curing reaction on the electrical properties of epoxy composites cured with acid-anhydride. Five TSC peaks appeared in -160-250[.deg.C]: in the low temperature region below glass transition temperature(T$\_$g/), three relaxation mode peaks due to action of side chains, substitution group or terminal groups have been observed, a peak associated with T$\_$g/, appeared in 110[.deg. C] and p peak due to ionic space charges located in 150[.deg.C]. Each peak was separated into elementary peaks by the partial polarization procedure, and the distribution of activation energy and relaxation time were analized to clearify the origin of each peak. Also, overaboundantly added hardener separated a .betha. peak near 10[.deg. C] into two peaks of .betha.$\_$1/(10.deg. C) and .betha.$\_$2/(20.deg. C) according to increasement of forming field, and the separated hardener was oxidated thermally with increasing surrounding temperatures. The expansion of the free volume need in molecular motion and the reduction of the structural packing density through thermal oxidation process increased TSC between .alpha. peak and .betha. peak and decreased T$\_$g/.

  • PDF

The study of ferroelectric properties for Pb(Mg1/3Ta2/3)O3-PbTiO3 solid solution modified with ZrO2 (ZrO2 첨가에 따른 Pb(Mg1/3Ta2/3)O3-PbTiO3 고용체의 강유전 특성 연구)

  • Kim, B.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.317-321
    • /
    • 2008
  • The $0.65Pb(Mg_{1/3}Ta_{2/3})O_3-0.35PbTiO_3$ (PMT-PT)ceramics were near morphotropic phase boundary. The dielectric constant, the loss, and pyroelectric coefficient of the ceramics were measured as a function of temperature ($25^{\circ}C\;{\sim}\;250^{\circ}C$). The dielectric constant, the loss, and the pyroelectric coefficient could be improved with the addition of small amounts of $ZrO_2$ up to 0.2 mol%. The dielectric and pyroelectric peak temperature are slightly shifted to lower temperatrues with the addition of amount of $ZrO_2$.

Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics (망간이 혼입된 층상구조 Na1.9Li0.1Ti3O7 세라믹스의 유전율 ‒ 분광법과 교류 전도도 측정 연구)

  • Pal, Dharmendra;Pandey, J.L.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates ($Na_{1.9}Li_{0.1}Ti_3O_7$). The dependence of loss tangent (Tan$\delta$), relative permittivity ($\varepsilon_r$) and ac conductivity ($\sigma_{ac}$) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tan$\delta$) in manganese-doped derivatives of layered $Na_{1.9}Li_{0.1}Ti_3O_7$ ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping.