• Title/Summary/Keyword: 공간적 연관성

Search Result 538, Processing Time 0.039 seconds

Analysis of Spatial Association in Seoul Metropolitan Area (서울대도시권 도시 간 공간적 연관성 분석)

  • Bai, Joon-Seok;Chang, Hoon;Kim, Jy-So
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.68-71
    • /
    • 2010
  • 본 논문에서는 서울대도시권의 1990년 이후 공간구조 변화에 대하여 도시 간 공간적 연관성에 초점을 맞추어 분석하였다. 서울대도시권을 포함하고 있는 서울시와 인천 및 경기도 도시들 간의 1990년에서 2005년에 이르는 15년의 통근 통학자 자료를 바탕으로 통근 통학비율과 Moran's I를 통하여 서울대도시권 내 도시들의 공간적 연관성을 분석한 결과, 서울대도시권 내에서 서울시의 인구는 경기지역으로 분산되고 있으며 외곽지역으로 이동하는 경향을 보이고 있다. 이는 서울대도시권의 교외화 확산이 심화되고 있다는 것을 의미하며, 또한 인접지역 간 매우 강한 공간적 연관성을 보임이 확인되었다. 분석 결과는 서울대도시권 관리와 정책수립을 뒷받침하는 기초자료로 활용될 수 있을 것이다.

  • PDF

Estimating Probability of Mode Choice at Regional Level by Considering Spatial Association of Departure Place (출발지 공간 연관성을 고려한 지역별 수단선택확률 추정 연구)

  • Eom, Jin-Ki;Park, Man-Sik;Heo, Tae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.656-662
    • /
    • 2009
  • In general, the analysis of travelers' mode choice behavior is accomplished by developing the utility functions which reflect individual's preference of mode choice according to their demographic and travel characteristics. In this paper, we propose a methodology that takes the spatial effects of individuals' departure locations into account in the mode choice model. The statistical models considered here are spatial logistic regression model and conditional autoregressive model taking a spatial association parameter into account. We employed the Bayesian approach in order to obtain more reliable parameter estimates. The proposed methodology allows us to estimate mode shares by departure places even though the survey does not cover all areas.

A Generalized Procedure to Extract Higher Order Moments of Univariate Spatial Association Measures for Statistical Testing under the Normality Assumption (일변량 공간 연관성 측도의 통계적 검정을 위한 일반화된 고차 적률 추출 절차: 정규성 가정의 경우)

  • Lee, Sang-Il
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.2
    • /
    • pp.253-262
    • /
    • 2008
  • The main objective of this paper is to formulate a generalized procedure to extract the first four moments of univariate spatial association measures for statistical testing under the normality assumption and to evaluate the viability of hypothesis testing based on the normal approximation for each of the spatial association measures. The main results are as follows. First, predicated on the previous works, a generalized procedure under the normality assumption was derived for both global and local measures. When necessary matrices are appropriately defined for each of the measures, the generalized procedure effectively yields not only expectation and variance but skewness and kurtosis. Second, the normal approximation based on the first two moments for the global measures fumed out to be acceptable, while the notion did not appear to hold to the same extent for their local counterparts mainly due to the large magnitude of skewness and kurtosis.

An Alternative Method for Assessing Local Spatial Association Among Inter-paired Location Events: Vector Spatial Autocorrelation in Housing Transactions (쌍대위치 이벤트들의 국지적 공간적 연관성을 평가하기 위한 방법론적 연구: 주택거래의 벡터 공간적 자기상관)

  • Lee, Gun-Hak
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.564-579
    • /
    • 2008
  • It is often challenging to evaluate local spatial association among onedimensional vectors generally representing paired-location events where two points are physically or functionally connected. This is largely because of complex process of such geographic phenomena itself and partially representational complexity. This paper addresses an alternative way to identify spatially autocorrelated paired-location events (or vectors) at a local scale. In doing so, we propose a statistical algorithm combining univariate point pattern analysis for evaluating local clustering of origin-points and similarity measure of corresponding vectors. For practical use of the suggested method, we present an empirical application using transactions data in a local housing market, particularly recorded from 2004 to 2006 in Franklin County, Ohio in the United States. As a result, several locally characterized similar transactions are identified among a set of vectors showing various local moves associated with communities defined.

  • PDF

A Study on Spatial Patterns of Traffic Accidents using GIS and Spatial Data Mining Methods: A Case Study of Kangnam-gu, Seoul (GIS와 공간 데이터마이닝을 이용한 교통사고의 공간적 패턴 분석 - 서울시 강남구를 사례로 -)

  • 이건학
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.3
    • /
    • pp.457-472
    • /
    • 2004
  • The purpose of this study is to analyze spatial patterns of traffic accidents and to investigate spatial relations among neighboring spatial objects by applying GIS and spatial data mining methods. This study investigated traffic accident data in Kangnam-gu, Seoul, as a case study. As a result, four clusters were emerged based on individual attributes of traffic accidents. Each cluster showed distinctive properties. In spatial associations between individual attributes of traffic accidents and neighboring spatial objects, there were many rules according to concept hierarchy and definition of spatial relations. Although all rules were not be interesting and significant, they could be a clue to investigate more.

Application of Bivariate Spatial Association for the Quantitative Marine Environment Pattern Analysis (정량적인 해양환경패턴 분석을 위한 이변량 공간연관성 적용)

  • Hwang, Hyo-Jung;Choi, Hyun-Woo;Kim, Tea-Rim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.155-166
    • /
    • 2008
  • The quantitative bivariate spatial pattern analysis was applied for the water quality and nutrients data of Masan Bay, and for this analysis Pearson's r as aspatial correlation measurement, Moran's I as spatial association measurement and L index as integration of aspatial and spatial measurement methods were used. To understand the aspatial and spatial characteristics implicated in L index, Pearson's r as well as Moran's I were classified into 3 types respectively, and Pearson's r and Moran's I were combined with 9 types, and also quantile of L index value was used for each of those 9 types. Finally, these types were defined as 5 groups having not overlapped L index range. According to the application result of L index groups, bivariate water quality and nutrients showed no aspatial correlation regardless of spatial association in February and July, but they showed aspatial correlation having clustered spatial pattern in May and November. The result of this study providing the guideline for the interpretation of aspatial correlation and spatial association using L index is expected to be helpful for the marine environment pattern analysis using quantitative index for further study.

  • PDF

A Spatial Data Mining Method by Clustering Analysis (클러스터링 분석에 의한 공간데이터마이닝 방법)

  • 손은정;강인수;김태완;이기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.161-163
    • /
    • 1998
  • 지리정보시스템과 같이 방대한 양의 공간데이터를 다루는 응용시스템에서 공간데이터베이스로부터 규칙적인 특성이나, 혹은 관심 있는 지식을 추출해내는 공간데이터마이닝의 역할은 매우 중요하다. 이를 위해 지금까지 이루어진 방법들에는 여러 가지가 있지만 그 중에서 대표적인 방법이 클러스터링으로 이는 단지 기하학적인 거리에 기반을 둔 공간적인 집중성과 분포도를 찾는 데에만 한정되어 있다. 그러나, 공간데이터마이닝을 위해서는 공간클러스터가 형성된 원인을 분석하는 것 또한 필요하다. 따라서 본 연구에서는 공간 클러스터링에서 얻어진 결과를 다른 공간적인 객체와의 연관성을 분석하여 공간적 집중성과 분포도를 유발하는 원인을 찾는 방법을 다룬다. 우선 몇 가지의 거리를 정의하는 것에 의해 클러스터와 공간객체사이의 연관성을 분석하는 방법을 제시하고, 생성된 공간 클러스터가 다수의 공간객체에 영향을 받을 경우, 그 공간 클러스터를 각각 단위클러스터로 분리하는 방법을 제시한다.

An ESDA Tool for Time-series Spatial Association (지역분석을 위한 시계열 공간연관성 탐색도구)

  • Ahn Jae-Seong;Park Key-Ho;Lee Yang-Won
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.163-176
    • /
    • 2006
  • The concept of 'spatial association' explains spatial distribution pattern of geographical phenomenon based on similarity with neighborhoods, as in the Tobler's Law of Geography: 'Everything is related to everything else, but near things are more related than distant things.' In this study, we develop a time-series exploratory analysis tool for discovering temporal patterns of spatial association by combining spatial statistics and geo-visualization, and thus present a possibility to support spatial decision-making process. As for the spatial proximity weight matrix indispensable to measuring global and local spatial association, we employ a variety of flexible weighting schemes using geometric characteristics of areal unit. In addition, we renovate the existing visualization methods for more effective understanding of the procedures and results of time-series analysis on spatial association: for instance, temporal parallel coordinate plot with box plot, animated map for spatial association, and 3D Moran scatterplot. The feasibility of our system is verified by time-series analysis experiments on the spatial association of land price fluctuation rate for all administrative units in Korea, $1995{\sim}2004$.

  • PDF

Bayesian spatial analysis of obesity proportion data (비만율 자료에 대한 베이지안 공간 분석)

  • Choi, Jungsoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1203-1214
    • /
    • 2016
  • Obesity is a risk factor for various diseases as well as itself a disease and associated with socioeconomic factors. The obesity proportion has been increasing in Korea over about 15 years so that investigation of the socioeconomic factors related with obesity is important in terms of preventation of obesity. In particular, the association between obesity and socioeconomic status varies with gender and has spatial dependency. In the paper, we estimate the effects of socioeconomic factors on obesity proportion by gender, considering the spatial correlation. Here, a conditional autoregressive model under the Bayesian framework is used in order to take into account the spatial dependency. For the real applicaiton, we use the obestiy proportion dataset at 25 districts of Seoul in 2010. We compare the proposed spatial model with a non-spatial model in terms of the goodness-of-fit and prediction measures so the spatial model performs well.