• Title/Summary/Keyword: 공간인식 알고리즘

Search Result 355, Processing Time 0.026 seconds

Traffic Sign Recognition Using Color Information and Neural Network with Multi-layer Perceptron (컬러정보와 다층퍼셉트론 신경망을 이용한 교통표지판 인식)

  • Bang, Gul-Won;Kang, Dea-Yook;Kim, Byung-Ki;Cho, Wan-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.305-308
    • /
    • 2007
  • 본 논문은 교통표지판을 자동으로 인식하는 방법에 관한 연구로 기존의 교통표지판 인식시스템에서는 인식하는데 걸리는 시간이 길고 잡음환경에서 인식률이 저하되며 변경된 교통표지판은 인식하지 못하는 문제점이 있다. 본 논문에서는 이와 같은 문제점을 해결하기위해 컬러정보를 이용하여 교통표지판 영역을 추출하고 추출된 이미지를 인식하는데 다층퍼셉트론 신경망 알고리즘을 적용하여 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판 영역을 추출한다. 영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 군집화한다. 교통표지판 인식은 학습이 가능한 다층퍼셉트론의 오류역전파알고리즘을 적용하여 인식한다. 다층퍼셉트론 신경망 알고리즘은 패턴인식 분야에서 우수한 성능이 입증 되었다.

Binary Neural Network in Binary Space using NETLA (NETLA를 이용한 이진 공간내의 패턴분류)

  • Sung, Sang-Kyu;Park, Doo-Hwan;Jeong, Jong-Won;Lee, Joo-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.431-434
    • /
    • 2001
  • 단층 퍼셉트론이 처음 개발되었을 때, 간단한 패턴을 인식하는 학습 기능을 가지고 있기 장점 때문에 학자들의 관심을 끌었다. 단층 퍼셉트론은 한 개의 소자를 이용해서 이진 논리를 가중치(weight)의 변경만으로 모두 표현할 수 있는 장점 때문에 영상처리, 패턴인식, 장면인식 등에 이용되어 왔다. 최근에, 역전파학습(Back-Propagation Learning)알고리즘이 이진 공간내의 매핑 문제에 적용되고 있다. 그러나, 역전파 학습알고리즘은 연속공간 내에서 긴 학습시간과 비효율적인 수행의 문제를 가지고 있다. 일반적으로 역전파 학습 알고리즘은 간단한 이진 공간에서 매핑하기 위해서 많은 반복과정을 요구한다. 역전파 학습 알고리즘에서는 은닉층의 뉴런의 수는 주어진 문제를 해결하기 위해서 우선순위(prior)를 알지 못하기 때문에 입력층과 출력층내의 뉴런의 수에 의존한다. 따라서, 3층 신경회로망의 적용에 있어 가장 중요한 문제중의 하나는 은닉층내의 필요한 뉴런수를 결정하는 것이고, 회로망 합성과 가중치 결정에 대한 적절한 방법을 찾지 못해 실제로 그 사용 영역이 한정되어 있었다. 본 논문에서는 패턴 분류를 위한 새로운 학습방법을 제시한다. 훈련입력의 기하학적인 분석에 기반을 둔 이진 신경회로망내의 은닉층내의 뉴런의 수를 자동적으로 결정할 수 있는 NETLA(Newly Expand and Truncate Learning Algorithm)라 불리우는 기하학적 학습알고리즘을 제시하고, 시뮬레이션을 통하여, 제안한 알고리즘의 우수성을 증명한다.

  • PDF

Indoor Space Recognition using Super-pixel and DNN (DNN과 슈퍼픽셀을 이용한 실내 공간 인식)

  • Kim, Kisang;Choi, Hyung-Il
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, we propose an indoor-space recognition using DNN and super-pixel. In order to recognize the indoor space from the image, segmentation process is required for dividing an image Super-pixel is performed algorithm which can be divided into appropriate sizes. In order to recognize each segment, features are extracted using a proposed method. Extracted features are learned using DNN, and each segment is recognized using the DNN model. Experimental results show the performance comparison between the proposed method and existing algorithms.

Review on Genetic Algorithms for Pattern Recognition (패턴 인식을 위한 유전 알고리즘의 개관)

  • Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • In pattern recognition field, there are many optimization problems having exponential search spaces. To solve of sequential search algorithms seeking sub-optimal solutions have been used. The algorithms have limitations of stopping at local optimums. Recently lots of researches attempt to solve the problems using genetic algorithms. This paper explains the huge search spaces of typical problems such as feature selection, classifier ensemble selection, neural network pruning, and clustering, and it reviews the genetic algorithms for solving them. Additionally we present several subjects worthy of noting as future researches.

Face Recognition Algorithms for Analyzing Floating Population (유동인구 분석을 위한 얼굴 인식 알고리즘)

  • Kim, Jihwan;Kim, Doohyun;Kim, Jinwoo;Go, Youjune;Lee, Soowon;Lee, Jeongjin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.853-856
    • /
    • 2014
  • 본 연구에서는 유동인구 얼굴을 인식하기 위한 방법을 비교하고 유동인구 분석을 위한 얼굴 인식 알고리즘의 성능을 평가하는데 중점을 둔다. 현재 얼굴 인식 알고리즘의 종류는 매우 다양한데 건널목이라는 특정 공간을 제약하여 알고리즘들에 대한 평가와 분석을 통하여 앞으로 건널목 유동이구를 분석하기 위해 얼굴 인식 알고리즘을 사용하는 사용자에게 정보를 제공하고자 한다. 특히 Color Model 기반 얼굴 인식 알고리즘과 Haar-Like Feature 기반 얼굴 인식 알고리즘을 각각 이용하여 환경에 따른 성능을 비교 분석하고 그 평가를 한다.

Gesture Recognition in Video image with Combination of Partial and Global Information (로컬 모션정보와 글로벌 모션정보를 조합한 제스쳐 인식)

  • 오재용;이칠우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.279-283
    • /
    • 2004
  • 본 논문에서는 일반적인 비디오 스트림에서 자동으로 인간의 제스처를 인식하는 알고리즘에 대하여 기술한다. 본 알고리즘은 입력된 비디오 영상으로부터 추출된 신체영역의 2차원적 특징 벡터를 사용하며, 주성분 분석법(Principle Component Analysis)을 통하여 모델 제스처 공간(Model Gesture space)을 구성함으로서 제스처를 통계학적으로 분석/표현하며, 이 제스처 공간에서 새로 입력되는 영상을 같은 방법으로 투영시키고, HMM(Hidden Markov Model) 이론을 적용하여 심볼화함으로써 최종적으로 제스처를 인식하게 된다. 본 방법은 기존의 제스처 인식 방법들과는 달리 전체적인 영상 정보(Global Information)와 세부적인 영상 정보(Partial Information)를 조합하여 사용한다는데 특징이 있으며, 본 알고리즘을 통해 보다 정확하게 강건한 제스처 인식 기술을 실생활에 적용할 수 있을 것이다.

  • PDF

Optimal Design of Fuzzy Set-based Fuzzy Neural Network with Multi-Output and Its application to Partial Discharge Pattern Recognition (다중 출력을 가진 퍼지 집합 기반 퍼지뉴럴네트워크 최적 설계 및 부분방전 패턴인식으로의 적용)

  • Park, Geon-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.411-414
    • /
    • 2008
  • 본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.

  • PDF

Electromyogram Pattern Recognition by Hierarchical Temporal Memory Learning Algorithm (시공간적 계층 메모리 학습 알고리즘을 이용한 근전도 패턴인식)

  • Sung, Moo-Joung;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.

Its Application and Realization of Self-Recognition Algorithm Based on Biological Immune System (생체 면역계를 이용한 자기 인식 알고리즘의 구현과 응용)

  • Sun, Sang-Joon;Seo, Dong-Il;Kim, Dae-Su;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.161-164
    • /
    • 2001
  • 생명체의 면역계는 외부에서 침입해 세포나 장기에 피해를 주는 물질인 항원을 스스로 자기세포와 구분해 인식하고 제거하는 기능을 가지고 있다. 이러한 면역계의 특징 중의 하나는 항원과 구별되는 자기 세포의 확실한 인식을 가지고 구분하는 자기/비자기(self/non-self) 인식방법이다. 이러한 기능을 가장 잘 보여주는 면역 T세포 중의 하나인 세포독성 T세포(T-cytotoxic Cell)는 자기세포를 인식하는 부분과 항원으로 인식하는 부분으로 구성되어 항원에 의해 감염된 자기세포를 찾아 제거하는 역할을 한다. 본 논문에서는 생명체의 면역계에서 중요한 역할을 하는 세포독성 T세포의 생성중의 자기인식 과정의 하나인 Positive Selection을 모델링하여 자기-인식 알고리즘 구현하였다. 구현한 알고리즘을 자기 공간의 국소변경과 블록변경에 대한 자기인식률을 통해 알고리즘의 유효성을 검증하며 응용 시스템으로 지문 인식에 적용하였다.

  • PDF

Face and Emotion Recognition Using Eigenface (Eigenface를 이용한 인간의 얼굴인식과 감정인식)

  • 이상윤;오재흥;장근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.321-324
    • /
    • 2002
  • 본 논문에서는 다양한 환경하에서 인간의 식별과 감정을 인식할 수 있는 감정 인식 알고리즘을 제안한다. 제안된 알고리즘을 구현하기 위해, 먼저, CCD 칼라 카메라에 의해 획득한 원 영상으로부터 피부색을 이용해 얼굴영상을 얻는 과정을 거친다. 그 다음, 주요 요소분석을 기본으로 하는 얼굴인식기술인 Eigenface를 사용하여 이미지들을 고차원의 픽셀공간으로부터 저차원공간으로의 변환하는 파정을 거친다. 제안된 개인에 대한 식별과 감성인식은 사용한 특징벡터들의 추출로 인한 Eigenface의 가중치와 상관관계를 통해 이루어진다 즉, 영상의 가중치로부터 개인에 대한 식별과 감성정보를 찾는 방법을 제안한다. 마지막으로, 실험을 통해 제안된 방법의 응용가능성을 보인다.