• Title/Summary/Keyword: 공간상세화

Search Result 186, Processing Time 0.036 seconds

Study for searching optimal parameters for analog based downscaling method (아날로그 공간상세화 기법의 적정 매개변수 탐색 연구)

  • Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.66-66
    • /
    • 2022
  • 아날로그 기법은 대표적인 공간상세화 기법 중 하나로써, 과거 기상 현상이 미래 재현된다는 가정 하에 목표 시점과 가장 유사한 기상패턴을 보이는 과거 시점을 활용하여 공간상세화를 수행하는 방법이다. 상세화 목표 시점과 가장 유사한 과거 시점을 찾기 위해서는 선결되어야 하는 매개변수가 존재한다. 특히 상세화 성능에 민감한 것으로 알려진 매개변수로는 목표 시점과 유사한 과거 시점 탐색에 활용되는 시공간 범위, 상세화 변수와 역학적 관계를 가지고 있는 종관기상변수, 상세화에 활용되는 과거 시점의 개수 등이 있다. 아날로그 기법의 매개변수를 탐색하고자 하는 시도는 국외에서 여러 차례 진행되어 왔으나, 각 매개변수는 지역의 기상특징에 따라 상이한 결과를 나타내었다. 국내에서는 국외에서 수행한 탐색 결과를 활용하여 공간상세화를 주로 수행하여 왔지만, 보다 높은 성능의 상세화를 수행하기 위해서는 국내 지역에 맞는 매개변수를 활용하는 것이 타당하다. 본 연구에서는 국내 지역에 적합한 아날로그 공간상세화 매개변수를 탐색하고 이를 제시하고자 한다. 탐색된 매개변수는 아날로그 공간상세화 기법뿐만 아니라 다양한 공간상세화 기법에 활용하능한 정보이기 때문에, 연구결과의 활용성이 높을 것으로 판단된다.

  • PDF

Evaluation of analog based downscaling considering Asian climate zone (아시아 기후대를 고려한 아날로그 공간상세화 기법 평가)

  • Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.93-93
    • /
    • 2021
  • 아날로그 기법은 대표적인 일기도분류 기반의 공간상세화 기법으로써 과거 기상 현상이 미래 재현된다는 가정 하에 공간상세화를 수행하는 방법이다. 대규모 공간범위에 대한 아날로그 기법 적용 시에 지역 구분을 기반으로 적용하는 것이 바람직하다고 알려져 있으며, 기상 변수 간의 선형 상관성을 기반으로 지역구분을 수행하는 기법이 제안된 바 있다. 다만 기존 방법은 아날로그 시점을 찾는 범위가 지나치게 넓어지거나, 공간적으로 불연속적인 구간이 발생할 수 있다. 따라서 지역 간 기후변동성이 크고 도서가 다수 위치한 아시아 지역에서는 부적합한 방법이다. 본 연구에서는 아시아 지역에 대해 지역별 기후특성을 반영할 수 있는 아날로그 공간상세화 기법(BCIA)을 제안하고 평가하고자 한다. 본 연구에서는 쾨펜 기후구분과 ETCCDI 지수를 활용하여 기후특성을 고려한 지역구분을 수행하였으며, 이를 기반으로 아날로그 상세화를 수행하고 평가하였다. 평가결과 BCIA는 기존 아날로그 기법에 비해 기후 특성을 재현하는데 효과적인 것으로 나타났으며, 특히 극치 계열의 기후 지수, 강수일수와 관련된 기후 지수의 재현성이 우수한 것을 확인하였다. 본 연구에서는 기존 일부 지역에서만 시도되었던 지역별 아날로그 적용 방법론을 아시아 지역에 맞게 새롭게 제안하였고 이에 대한 활용성을 검증하였다는 점에서 가치가 있다.

  • PDF

A study on spatial indexing for level of detail data (레벨별 상세화 데이터를 지원하는 공간 인덱싱에 대한 연구)

  • 권준희;윤용익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.97-99
    • /
    • 2001
  • 최근 웹 기반 혹은 모바일 기반의 지리정보시스템과, 높은 품질의 공간데이터에 대한 요구가 증대하고 있다. 이를 해결하기 위해서는 레벨별 상세화를 지원하는 데이터가 제공되어야 하며, 이러만 데이터를 효율적으로 처리하는 공간 인덱싱이 필요하다. 그러나, 레벨별 상세화 데이터를 지원하는 공간 인데싱 기법에 대한 기존 연구는 일부 일반화 연산자만을 지원하고 레벨별 데이터간 일관성을 고려하지 않는다는 문제점을 가진다. 본 연구에서는 이러한 문제를 극복하고자 일관성이 보장되는 맵 일반화 연산자를 모두 지원하는 공간 인덱싱 기법을 제안한다. 이를 통해 레벨별 상세화를 지원하는 데이터가 보다 효과적으로 다루어질 수 있다는 의의를 가진다.

  • PDF

Development of Climate Data Management System Based on Satellite Imagery for Asia-Pacific Regions (아시아-태평양 지역 대상 위성영상 기반 기후 자료 관리 시스템 개발)

  • Park, Jihoon;Park, Kyungwon;Jung, Imgook;Cho, Wonil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.23-23
    • /
    • 2019
  • 본 연구의 목적은 아시아-태평양 지역을 대상으로 위성영상 기반 고해상도의 신뢰성이 있고 쉽게 접근할 수 있는 강수 자료를 제공하는 데 있다. 본 연구에서 개발한 기후 관리 시스템은 총 3가지의 위성자료(원시위성자료, 편의보정한 위성자료, 공간상세화한 위성자료)를 제공한다. 위성자료의 공간해상도는 $0.1^{\circ}$, $0.05^{\circ}$이며, 시간해상도는 1 day이다. 비교적 신뢰성이 높은 기후 자료가 구축된 한반도를 대상으로 위성영상 편의보정, 공간상세화 기법을 검증하고, 개발한 기법을 아시아-태평양에 위치한 바누아투에 적용하여 기후 자료를 생산하였다. 원시위성자료는 TRMM (Tropical Rainfall Measurement Mission) 위성과 GPM (Global Precipitation Mission) 위성을 사용하여 구축하였다. 편의보정은 GRA-IDW (Geographical Ratio Analysis-Inverse Distance Weighted), GRA-Kriging, QM (Quantile Mapping) 기법을 검토하여 본 연구에 적합한 알고리즘을 개발하고 이 중 최적의 결과를 보여주는 GRA-IDW 기법을 최종적으로 선정하였다. 공간상세화는 PRISM (Parameter-elevation Regressions on Independent Slopes Model)을 선정하여 수행하였다. 원시위성자료를 검증한 결과를 살펴보면 상관계수는 1998년부터 2017년까지 0.775로 비교적 정확도가 높게 나왔다. bias 값은 원시위성자료 값이 지상관측자료보다 과대추정하는 것으로 나타났다. 최종적인 편의보정 기법으로 GRA-IDW 기법을 선정하여 편의보정한 위성자료를 생산하였다. 공간상세화한 위성자료를 검증한 결과를 앞서 분석한 원시위성자료, 편의보정한 위성자료와 비교하면, 공간상세화를 수행하기 전보다 상관계수는 다소 작아지고, RMSE는 커지는 것으로 나타나나 그 차이가 크지 않아 공간상세화한 위성자료를 응용분야에 직접 사용할 수 있을 것으로 분석된다. 본 연구를 통해 개발된 기법을 활용하면 아시아-태평양에 신뢰성 있는 기후 관측 자료를 제공할 수 있다. 향후 본 연구에서 선정한 대상지역 이외에 기상관측소의 수가 희박하고 불균등하게 분포하고 있는 아시아-태평양 지역에 본 과업에서 개발한 시스템을 적용하여 신뢰성 있는 기후 자료를 제공할 수 있을 것으로 사료된다.

  • PDF

A New Spatial Indexing Method for Level-Of-Detailed Data (레벨별로 상세화된 공간 데이터를 위한 새로운 공간 인덱싱 기법)

  • 권준희;윤용익
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.361-371
    • /
    • 2002
  • An efficient access technique is one of the most Important requirements in GIS. Using level -of-detailed data, we can access spatial data efficiently, because of no access to the fully detailed spatial data. Previous spatial access methods do not access data with level of detail efficiently. To solve it, a few spatial access methods for spatial data with level of detail, are known. However these methods support only a few kinds of data with level of detail, i.e, data through selection and simplification operations. For the effects, we propose a new spatial indexing method supporting fast searching in all kinds of data with level of detail. In the proposed method, the collection of indexes in its own level are integrated into a single index structure. Experimental results show that our method offers both no data redundancy and high search performance.

  • PDF

Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios (기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가)

  • Kim, Ji-Hye;Kang, Moon-Seong;Song, In-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF

A Development of Downscaling Model for Sub-daily Rainfall Based on Bayesian Copula model (Bayesian Copula 모형을 활용한 시간단위 강우량 상세화 기법 모형 개발)

  • Kim, Jin-Young;So, Byung-Jin;Kwon, Duk-Soon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.229-229
    • /
    • 2016
  • 현재 국내외에서 제공되고 있는 기후변화 시나리오 자료의 경우 일단위로 제공되고 있다. 그러나 수자원 설계 및 계획 시 중요한 입력자료 중 하나는 시간단위 강우 자료이다. 이러한 시간단위 자료는 강우-유추 분석, 댐 설계 및 위험도 분석에 있어 중요한 입력 변수중 하나이므로 기후변화 시나리오에 따른 영향을 평가하기 위해선 신뢰성 있는 상세화 기법이 필요하다. 국내외에서는 일단위에서 일단위로 상세화 하는 기법, 또는 공간상세화 기법 연구는 상당히 진행된바 있는 반면, 시간단위 상세화 기법 연구는 일단위 연구에 비해 상대적으로 미진한 실정이다. 즉 일단위 상세화 기법의 경우 Weather generator, Weather typing 등 다양한 기법이 존재하고 이를 활용한 연구사례가 많지만, 시간단위 상세화 기법의 Poisson 기법을 활용한 사례가 다수 존재하였다. 이러한 이유로 본 연구에서는 기후변화 시나리오에 따른 영향을 평가하기 위해 Bayesian 기법을 도입하여 신뢰성 있는 시간단위 강우량을 생성할 수 있는 모형을 개발하였으며, 연대별로 산정된 결과는 빈도해석을 통해 미래 확률강우량을 제시하였다. 본 연구에서 제안하고자 하는 Bayesian Copula 모형은 기존 주변확률분포(marginal distribution) 매개변수와 Copula 매개변수 추정시 각각 다른 기법을 활용하여 추정하며, 각각 모형에서 발생하는 불확실성은 추정하지 못하는 반면, Bayesian Copula 모형의 경우 매개변수의 사후분포를 정량적으로 제시할 수 있으며, 추정되는 확률강우량 역시 불확실성을 정량적으로 산정할 수 있는 장점을 확인할 수 있었다.

  • PDF

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

Spatial Downscaling of Grid Precipitation Using Support Vector Machine Regression (SVM 회귀 모형을 활용한 격자 강우량 상세화 기법)

  • Moon, Heewon;Baik, Jongjin;Hwang, Sukhwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1095-1105
    • /
    • 2014
  • A spatial downscaling method using the Support Vector Machine (SVM) Regression for 25 km Tropical Rainfall Measuring Mission (TRMM) Monthly precipitation is proposed. The nonlinear relationship among hydrometeorological variables and precipitation was effectively depicted by the SVM for predicting downscaled grid precipitation. The accuracy of spatially downscaled precipitation was estimated by comparing with rain gauge data from sixty-four stations and found to be improved than the original TRMM data in overall. Especially the positive bias of the original TRMM data was effectively removed after the downscaling procedure. The spatial distributions of 25 km and 1 km grid precipitation were generally similar, while the local spatial trend was better detected by 1 km grid precipitation. The downscaled grid data derived from the proposed method can be applied in hydrological modelling for higher accuracy and further be studied for developing optimized downscaling method incorporation other regression methods.

Assessment for Downscaling Method of TRMM Satellite Observation using PRISM Method (PRISM 기법을 이용한 TRMM 위성자료의 상세화 기법 평가)

  • So, Byung-Jin;Yoo, Ji-Young;Kim, Min-Ji;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.5-5
    • /
    • 2015
  • 현재 우리나라에서 지상관측장비인 AWS(Automatic Weather System)와 ASOS(Automated Synoptic Observing System)기구가 한반도내 668개 지점에서 운영되고 있다. 이러한 장비는 지상관측장비로 하나의 지점에서 측정된 기상변량들이 특정 영역의 대푯값으로 사용되어지고 있다. 기존의 다양한 지점 단위의 수문 모형에서는 지상관측소를 통한 관측값을 적용하기에 어려움 없이 적절한 결과를 도출할 수 있었다. 컴퓨터의 발달로 인하여 복잡한 물리적 현상을 공간적으로 분석할 수 있는 모형의 구동이 가능해짐에 따라서 수문 분야에서도 다양한 분포형 해석 모형이 활발하게 개발 및 적용되고 있다. 지점 관측 자료는 공간적인 연속성을 반영하지 못하는 한계로 인하여 지점 관측자료를 이용한 공간자료의 생성 기법들이 사용되어지고 있지만 자연계에서 나타나는 정확한 공간적 현상을 재현해주지 못하는 문제점이 존재한다. 이러한 지점 관측의 한계를 해결하기 위하여 공간적인 관측이 가능한 레이더와 위성관측과 같은 원격 관측 장비들이 개발되어 공간적으로 연속성을 갖는 기상변량의 취득이 가능하여졌다. TRMM 강우자료는 지구 전체를 0.25도 약 25km 공간해상도를 갖으며 3시간 간격으로 제공되고 있다. 유역단위의 수문모형에 적용하기에 TRMM 강수자료의 공간해상도는 너무 커서 직접적인 적용에 어려움이 있다. 이러한 점에서 TRMM 자료의 상세화 기법을 통하여 수문모형에 적용이 가능한 1km 이하의 고해상도 자료를 생산하는 연구들이 진행되고 있다. 이러한 상세화 방법은 최종적으로 도출하고자 하는 공간해상도를 갖는 대체 변량(지표면 온도, 고도, 식생, 해수면 기압, 상대 습도, 대기온도, 풍향 등)을 이용하여 회귀분석의 형태로 분석이 이루어지고 있다. 그러나 대체 변량을 통해 도출된 상세화된 TRMM 강우는 간접적인 추정으로 인하여 정확한 결과의 도출에는 한계가 있을 것으로 판단된다. 이러한 점에서 본 연구에서는 한반도내 지상 관측값을 공간적 자료로 변환하여 주는데 효과적으로 평가받는 PRISM 모형에 적용하여 기존 SVM 모형을 통한 TRMM 상세화 결과가 갖는 정확성을 평가해 보고 지점 관측자료의 보간 기법의 평가에 TRMM 자료를 활용하는 방안에 대해 평가해 보고자 한다.

  • PDF