Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.66-66
/
2022
아날로그 기법은 대표적인 공간상세화 기법 중 하나로써, 과거 기상 현상이 미래 재현된다는 가정 하에 목표 시점과 가장 유사한 기상패턴을 보이는 과거 시점을 활용하여 공간상세화를 수행하는 방법이다. 상세화 목표 시점과 가장 유사한 과거 시점을 찾기 위해서는 선결되어야 하는 매개변수가 존재한다. 특히 상세화 성능에 민감한 것으로 알려진 매개변수로는 목표 시점과 유사한 과거 시점 탐색에 활용되는 시공간 범위, 상세화 변수와 역학적 관계를 가지고 있는 종관기상변수, 상세화에 활용되는 과거 시점의 개수 등이 있다. 아날로그 기법의 매개변수를 탐색하고자 하는 시도는 국외에서 여러 차례 진행되어 왔으나, 각 매개변수는 지역의 기상특징에 따라 상이한 결과를 나타내었다. 국내에서는 국외에서 수행한 탐색 결과를 활용하여 공간상세화를 주로 수행하여 왔지만, 보다 높은 성능의 상세화를 수행하기 위해서는 국내 지역에 맞는 매개변수를 활용하는 것이 타당하다. 본 연구에서는 국내 지역에 적합한 아날로그 공간상세화 매개변수를 탐색하고 이를 제시하고자 한다. 탐색된 매개변수는 아날로그 공간상세화 기법뿐만 아니라 다양한 공간상세화 기법에 활용하능한 정보이기 때문에, 연구결과의 활용성이 높을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.93-93
/
2021
아날로그 기법은 대표적인 일기도분류 기반의 공간상세화 기법으로써 과거 기상 현상이 미래 재현된다는 가정 하에 공간상세화를 수행하는 방법이다. 대규모 공간범위에 대한 아날로그 기법 적용 시에 지역 구분을 기반으로 적용하는 것이 바람직하다고 알려져 있으며, 기상 변수 간의 선형 상관성을 기반으로 지역구분을 수행하는 기법이 제안된 바 있다. 다만 기존 방법은 아날로그 시점을 찾는 범위가 지나치게 넓어지거나, 공간적으로 불연속적인 구간이 발생할 수 있다. 따라서 지역 간 기후변동성이 크고 도서가 다수 위치한 아시아 지역에서는 부적합한 방법이다. 본 연구에서는 아시아 지역에 대해 지역별 기후특성을 반영할 수 있는 아날로그 공간상세화 기법(BCIA)을 제안하고 평가하고자 한다. 본 연구에서는 쾨펜 기후구분과 ETCCDI 지수를 활용하여 기후특성을 고려한 지역구분을 수행하였으며, 이를 기반으로 아날로그 상세화를 수행하고 평가하였다. 평가결과 BCIA는 기존 아날로그 기법에 비해 기후 특성을 재현하는데 효과적인 것으로 나타났으며, 특히 극치 계열의 기후 지수, 강수일수와 관련된 기후 지수의 재현성이 우수한 것을 확인하였다. 본 연구에서는 기존 일부 지역에서만 시도되었던 지역별 아날로그 적용 방법론을 아시아 지역에 맞게 새롭게 제안하였고 이에 대한 활용성을 검증하였다는 점에서 가치가 있다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.97-99
/
2001
최근 웹 기반 혹은 모바일 기반의 지리정보시스템과, 높은 품질의 공간데이터에 대한 요구가 증대하고 있다. 이를 해결하기 위해서는 레벨별 상세화를 지원하는 데이터가 제공되어야 하며, 이러만 데이터를 효율적으로 처리하는 공간 인덱싱이 필요하다. 그러나, 레벨별 상세화 데이터를 지원하는 공간 인데싱 기법에 대한 기존 연구는 일부 일반화 연산자만을 지원하고 레벨별 데이터간 일관성을 고려하지 않는다는 문제점을 가진다. 본 연구에서는 이러한 문제를 극복하고자 일관성이 보장되는 맵 일반화 연산자를 모두 지원하는 공간 인덱싱 기법을 제안한다. 이를 통해 레벨별 상세화를 지원하는 데이터가 보다 효과적으로 다루어질 수 있다는 의의를 가진다.
Park, Jihoon;Park, Kyungwon;Jung, Imgook;Cho, Wonil
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.23-23
/
2019
본 연구의 목적은 아시아-태평양 지역을 대상으로 위성영상 기반 고해상도의 신뢰성이 있고 쉽게 접근할 수 있는 강수 자료를 제공하는 데 있다. 본 연구에서 개발한 기후 관리 시스템은 총 3가지의 위성자료(원시위성자료, 편의보정한 위성자료, 공간상세화한 위성자료)를 제공한다. 위성자료의 공간해상도는 $0.1^{\circ}$, $0.05^{\circ}$이며, 시간해상도는 1 day이다. 비교적 신뢰성이 높은 기후 자료가 구축된 한반도를 대상으로 위성영상 편의보정, 공간상세화 기법을 검증하고, 개발한 기법을 아시아-태평양에 위치한 바누아투에 적용하여 기후 자료를 생산하였다. 원시위성자료는 TRMM (Tropical Rainfall Measurement Mission) 위성과 GPM (Global Precipitation Mission) 위성을 사용하여 구축하였다. 편의보정은 GRA-IDW (Geographical Ratio Analysis-Inverse Distance Weighted), GRA-Kriging, QM (Quantile Mapping) 기법을 검토하여 본 연구에 적합한 알고리즘을 개발하고 이 중 최적의 결과를 보여주는 GRA-IDW 기법을 최종적으로 선정하였다. 공간상세화는 PRISM (Parameter-elevation Regressions on Independent Slopes Model)을 선정하여 수행하였다. 원시위성자료를 검증한 결과를 살펴보면 상관계수는 1998년부터 2017년까지 0.775로 비교적 정확도가 높게 나왔다. bias 값은 원시위성자료 값이 지상관측자료보다 과대추정하는 것으로 나타났다. 최종적인 편의보정 기법으로 GRA-IDW 기법을 선정하여 편의보정한 위성자료를 생산하였다. 공간상세화한 위성자료를 검증한 결과를 앞서 분석한 원시위성자료, 편의보정한 위성자료와 비교하면, 공간상세화를 수행하기 전보다 상관계수는 다소 작아지고, RMSE는 커지는 것으로 나타나나 그 차이가 크지 않아 공간상세화한 위성자료를 응용분야에 직접 사용할 수 있을 것으로 분석된다. 본 연구를 통해 개발된 기법을 활용하면 아시아-태평양에 신뢰성 있는 기후 관측 자료를 제공할 수 있다. 향후 본 연구에서 선정한 대상지역 이외에 기상관측소의 수가 희박하고 불균등하게 분포하고 있는 아시아-태평양 지역에 본 과업에서 개발한 시스템을 적용하여 신뢰성 있는 기후 자료를 제공할 수 있을 것으로 사료된다.
An efficient access technique is one of the most Important requirements in GIS. Using level -of-detailed data, we can access spatial data efficiently, because of no access to the fully detailed spatial data. Previous spatial access methods do not access data with level of detail efficiently. To solve it, a few spatial access methods for spatial data with level of detail, are known. However these methods support only a few kinds of data with level of detail, i.e, data through selection and simplification operations. For the effects, we propose a new spatial indexing method supporting fast searching in all kinds of data with level of detail. In the proposed method, the collection of indexes in its own level are integrated into a single index structure. Experimental results show that our method offers both no data redundancy and high search performance.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.124-124
/
2012
기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.
Kim, Jin-Young;So, Byung-Jin;Kwon, Duk-Soon;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.229-229
/
2016
현재 국내외에서 제공되고 있는 기후변화 시나리오 자료의 경우 일단위로 제공되고 있다. 그러나 수자원 설계 및 계획 시 중요한 입력자료 중 하나는 시간단위 강우 자료이다. 이러한 시간단위 자료는 강우-유추 분석, 댐 설계 및 위험도 분석에 있어 중요한 입력 변수중 하나이므로 기후변화 시나리오에 따른 영향을 평가하기 위해선 신뢰성 있는 상세화 기법이 필요하다. 국내외에서는 일단위에서 일단위로 상세화 하는 기법, 또는 공간상세화 기법 연구는 상당히 진행된바 있는 반면, 시간단위 상세화 기법 연구는 일단위 연구에 비해 상대적으로 미진한 실정이다. 즉 일단위 상세화 기법의 경우 Weather generator, Weather typing 등 다양한 기법이 존재하고 이를 활용한 연구사례가 많지만, 시간단위 상세화 기법의 Poisson 기법을 활용한 사례가 다수 존재하였다. 이러한 이유로 본 연구에서는 기후변화 시나리오에 따른 영향을 평가하기 위해 Bayesian 기법을 도입하여 신뢰성 있는 시간단위 강우량을 생성할 수 있는 모형을 개발하였으며, 연대별로 산정된 결과는 빈도해석을 통해 미래 확률강우량을 제시하였다. 본 연구에서 제안하고자 하는 Bayesian Copula 모형은 기존 주변확률분포(marginal distribution) 매개변수와 Copula 매개변수 추정시 각각 다른 기법을 활용하여 추정하며, 각각 모형에서 발생하는 불확실성은 추정하지 못하는 반면, Bayesian Copula 모형의 경우 매개변수의 사후분포를 정량적으로 제시할 수 있으며, 추정되는 확률강우량 역시 불확실성을 정량적으로 산정할 수 있는 장점을 확인할 수 있었다.
Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.
A spatial downscaling method using the Support Vector Machine (SVM) Regression for 25 km Tropical Rainfall Measuring Mission (TRMM) Monthly precipitation is proposed. The nonlinear relationship among hydrometeorological variables and precipitation was effectively depicted by the SVM for predicting downscaled grid precipitation. The accuracy of spatially downscaled precipitation was estimated by comparing with rain gauge data from sixty-four stations and found to be improved than the original TRMM data in overall. Especially the positive bias of the original TRMM data was effectively removed after the downscaling procedure. The spatial distributions of 25 km and 1 km grid precipitation were generally similar, while the local spatial trend was better detected by 1 km grid precipitation. The downscaled grid data derived from the proposed method can be applied in hydrological modelling for higher accuracy and further be studied for developing optimized downscaling method incorporation other regression methods.
So, Byung-Jin;Yoo, Ji-Young;Kim, Min-Ji;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.5-5
/
2015
현재 우리나라에서 지상관측장비인 AWS(Automatic Weather System)와 ASOS(Automated Synoptic Observing System)기구가 한반도내 668개 지점에서 운영되고 있다. 이러한 장비는 지상관측장비로 하나의 지점에서 측정된 기상변량들이 특정 영역의 대푯값으로 사용되어지고 있다. 기존의 다양한 지점 단위의 수문 모형에서는 지상관측소를 통한 관측값을 적용하기에 어려움 없이 적절한 결과를 도출할 수 있었다. 컴퓨터의 발달로 인하여 복잡한 물리적 현상을 공간적으로 분석할 수 있는 모형의 구동이 가능해짐에 따라서 수문 분야에서도 다양한 분포형 해석 모형이 활발하게 개발 및 적용되고 있다. 지점 관측 자료는 공간적인 연속성을 반영하지 못하는 한계로 인하여 지점 관측자료를 이용한 공간자료의 생성 기법들이 사용되어지고 있지만 자연계에서 나타나는 정확한 공간적 현상을 재현해주지 못하는 문제점이 존재한다. 이러한 지점 관측의 한계를 해결하기 위하여 공간적인 관측이 가능한 레이더와 위성관측과 같은 원격 관측 장비들이 개발되어 공간적으로 연속성을 갖는 기상변량의 취득이 가능하여졌다. TRMM 강우자료는 지구 전체를 0.25도 약 25km 공간해상도를 갖으며 3시간 간격으로 제공되고 있다. 유역단위의 수문모형에 적용하기에 TRMM 강수자료의 공간해상도는 너무 커서 직접적인 적용에 어려움이 있다. 이러한 점에서 TRMM 자료의 상세화 기법을 통하여 수문모형에 적용이 가능한 1km 이하의 고해상도 자료를 생산하는 연구들이 진행되고 있다. 이러한 상세화 방법은 최종적으로 도출하고자 하는 공간해상도를 갖는 대체 변량(지표면 온도, 고도, 식생, 해수면 기압, 상대 습도, 대기온도, 풍향 등)을 이용하여 회귀분석의 형태로 분석이 이루어지고 있다. 그러나 대체 변량을 통해 도출된 상세화된 TRMM 강우는 간접적인 추정으로 인하여 정확한 결과의 도출에는 한계가 있을 것으로 판단된다. 이러한 점에서 본 연구에서는 한반도내 지상 관측값을 공간적 자료로 변환하여 주는데 효과적으로 평가받는 PRISM 모형에 적용하여 기존 SVM 모형을 통한 TRMM 상세화 결과가 갖는 정확성을 평가해 보고 지점 관측자료의 보간 기법의 평가에 TRMM 자료를 활용하는 방안에 대해 평가해 보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.