• Title/Summary/Keyword: 공간밀도

Search Result 571, Processing Time 0.027 seconds

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method (지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석)

  • Hwang, Seokhwan;Kang, Narae;Yoon, Jung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1053-1064
    • /
    • 2022
  • The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Hyperspectral Image Analysis Technology Based on Machine Learning for Marine Object Detection (해상 객체 탐지를 위한 머신러닝 기반의 초분광 영상 분석 기술)

  • Sangwoo Oh;Dongmin Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1120-1128
    • /
    • 2022
  • In the event of a marine accident, the longer the exposure time to the sea increases, the faster the chance of survival decreases. However, because the search area of the sea is extremely wide compared to that of land, marine object detection technology based on the sensor mounted on a satellite or an aircraft must be applied rather than ship for an efficient search. The purpose of this study was to rapidly detect an object in the ocean using a hyperspectral image sensor mounted on an aircraft. The image captured by this sensor has a spatial resolution of 8,241 × 1,024, and is a large-capacity data comprising 127 spectra and a resolution of 0.7 m per pixel. In this study, a marine object detection model was developed that combines a seawater identification algorithm using DBSCAN and a density-based land removal algorithm to rapidly analyze large data. When the developed detection model was applied to the hyperspectral image, the performance of analyzing a sea area of about 5 km2 within 100 s was confirmed. In addition, to evaluate the detection accuracy of the developed model, hyperspectral images of the Mokpo, Gunsan, and Yeosu regions were taken using an aircraft. As a result, ships in the experimental image could be detected with an accuracy of 90 %. The technology developed in this study is expected to be utilized as important information to support the search and rescue activities of small ships and human life.

Application and development of a machine learning based model for identification of apartment building types - Analysis of apartment site characteristics based on main building shape - (머신러닝 기반 아파트 주동형상 자동 판별 모형 개발 및 적용 - 주동형상에 따른 아파트 개발 특성분석을 중심으로 -)

  • Sanguk HAN;Jungseok SEO;Sri Utami Purwaningati;Sri Utami Purwaningati;Jeongseob KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.55-67
    • /
    • 2023
  • This study aims to develop a model that can automatically identify the rooftop shape of apartment buildings using GIS and machine learning algorithms, and apply it to analyze the relationship between rooftop shape and characteristics of apartment complexes. A database of rooftop data for each building in an apartment complex was constructed using geospatial data, and individual buildings within each complex were classified into flat type, tower type, and mixed types using the random forest algorithm. In addition, the relationship between the proportion of rooftop shapes, development density, height, and other characteristics of apartment complexes was analyzed to propose the potential application of geospatial information in the real estate field. This study is expected to serve as a basic research on AI-based building type classification and to be utilized in various spatial and real estate analyses.

A study about investigation and analysis of river, downstream of damand establishing a river management plan (댐 직하류 하천조사분석 및 관리방안 수립 연구)

  • Su Yeon Kim;Kyoung Won Park;Young Ho Lee;Yong Kyu Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.514-514
    • /
    • 2023
  • 댐 건설은 하천의 유황, 유사량을 변화시켜 이·치수 및 생태계에 영향을 미치고 있다. 그러나 현재 댐 운영에 사용하고 있는 하천 기본계획은 10년마다 수립하고 있어 하천 지형 측량자료, 식생 및 수생태를 고려한 하천 관리 계획은 대부분 과거자료이다. 또한 홍수소통에 영향을 미치는 하도식생에 대한 연구가 거의 없어 최근 기후변화로 인해 빈번하게 발생하는 홍수 등 물재해에 적극적 대응이 어려운 실정이다. 따라서 최신의 하천 기초조사 자료 기반, '20년 댐 하류하천에 홍수가 발생한 4개 댐(대청, 합천, 용담, 섬진강댐)을 대상으로 하상변동, 식생 영향 등을 고려한 댐 직하류 하천관리방안을 마련하는 연구를 진행하였다. 최신 하천 기초조사 자료 확보를 위해 하천기본계획 등 문헌정보를 수집하고 댐 직하류의 수중부·육상부 측량, 유사량·하상재료 조사, 식생조사, 홍수흔적조사 등을 실시하였다. 확보한 기초자료를 바탕으로 하상변동 분석 모델 및 물리적 서식처 모의 모델을 통해 이수, 치수, 생태 측면으로 분석을 진행하였다. 이수 분석으로 HEC-RAS의 유사이송 분석을 통해 현재부터 20년 뒤의 하상변동을 분석하였다. 치수 분석으로 HEC-RAS 2D 등의 유사이송 분석을 사용하여 한 개의 홍수기 사상 발생 시 하상변동을 분석하였으며, 식생의 유무가 하상변동에 미치는 영향을 함께 분석하였다. 생태 분석으로는 PHABSIM을 사용하여 대상어종에 대한 하상변동 및 식생 유무에 따른 환경생태영향의 영향을 분석하였다. 분석을 바탕으로 각 대상 댐 직하류에 이수, 치수, 생태 측면의 하천관리방안을 수립하였다. 이수 분석을 통해 20년 뒤의 취양수장의 제약수위를 예측, 검토하고 취약구간 모니터링 구간을 산정하였다. 또한 침식과 퇴적이 크게 일어나는 구간을 산정하여 장·단기 하상변동 모니터링 구간을 제시하였다. 치수 분석을 통해 식생이 댐 하류에 미치는 영향을 분석하여 식생 저감 구간을 선정하는 등 적정 식생 밀도 조절 방안을 제시하였다. 또한 하상변동량이 큰 구간은 하상 안정 유지를 위한 수제 설치를 모델 결과를 통해 검토하였으며 제방 정비가 필요한 구간은 드론을 활용한 모니터링을 제안하였다. 생태 분석을 통해 대상 어종이 서식하기 가장 적합한 환경생태유량을 산정하고 댐 하류 하천의 자연성 회복을 위한 증가방류, 유사환원 등의 방안을 검토하였다.

  • PDF

Projection of Temporal and Spatial Precipitation Characteristic Change in Urban Area according to Extreme Indices (극한기후 지수에 따른 도시지역의 시공간적 강우 특성 변화 전망)

  • Soo Jin Moon;In Hee Yeo;Ji Hoon Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.316-316
    • /
    • 2023
  • 2022년 8월 수도권 이상폭우로 인해 서울 도심지역의 지하시설, 도로, 주택 등에 침수가 발생하면서 인명 및 재산피해가 발생하였으며, 특히 동서로 가로지르는 정체전선으로 좁고 긴 비구름이 집중되면서 국지적으로 피해가 집중되었다. 서울시의 경우 도시화에 따른 불투수지역 증가 및 내수배제 불량에 따른 빗물 역류로 인한 피해가 지속적으로 발생하고 있으며, 최근에는 기후변화에 따른 방재성능목표 강우량을 초과하는 빈도의 이상폭우로 인해 하천범람과 내수배제 불량에 따른 복합적인 원인으로 침수피해 가중되고 있는 실정이다. 또한 서울시의 경우 전체 자연적, 사회적, 경제적, 환경적 요인 등의 지역적 편차가 매우 큰 도시로 지형적인 특성뿐만 아니라 취약시설(병원, 학교 등), 수방시설물(하천, 배수시설, 빗물펌프장 등) 및 방재시설(대피소, 구호소 등) 밀도 등에 따른 침수 취약성 및 위험성 등의 편차가 매우 크기 때문에 지역특성에 대한 피해사례가 다원화 되고 있는 실정이다. 본 연구에서는 30년 이상의 종관기상관측(ASOS)과 서울시 자치구별 20년 이상의 방재기상관측(AWS)자료를 기반으로 CMIP6 SSP(Shared Socioeconomic Pathways, 공통사회 경제경로)시나리오에 따른 극한기후 지수(강수강도, 호우일수, 지속기간, 1일 최대강수량, 95퍼센타일 강수일수 등)에 대한 재현성을 평가하고 공간자기상관분석 등 시공간적인 강우특성에 대한 변화를 전망하였다. 특히 여름철 강우의 경우 자치구별 편차가 크게 나타났고 이를 통해 대도시의 도심지역의 경우 세분화하여 지역의 정확한 강우특성을 파악하는 것이 필요하다는 것을 확인할 수 있었다. 본 연구의 결과는 도심지의 방재성능 초과강우 정의와 기준을 수립하고, 장기적인 수자원 및 도시계획 차원의 대책을 마련하는데 활용될 수 있을 것으로 판단된다. 기후위기에 따른 기록적인 호우(지역별 방재성능을 초과하는 강우)에 따른 재해는 구조적인 대책을 통해 모두 저감할 수 없는 한계가 있다. 하지만 인명피해를 최소화하는 것을 목표로 기후위기에 대한 적응단계로 인식하고 수리·수문학적, 사회경제학적 등 지역특성에 따른 방재성능목표 강우량에 대한 재검토와 더불어 법제도(풍수해보험, 저류조설치 의무화 등), 개인별 재해예방, 취약계층 안전망 확보, 반지하주택 침수안전대책, 재해지도 개선 등 구조적/비구조적인 대책을 통합 수립 및 보완하는 것이 필요한 시점이다.

  • PDF

Detection of Microcystin Synthetic Cyanobacteria and Variation of Intracellular Microcystin Synthesis Using by eDNA and eRNA in Freshwater Ecocystem (담수환경에서 eDNA와 eRNA를 이용한 Microcystin 합성 남조류 탐색 및 세포 내 Microcystin 생합성 활성 변화)

  • Keonhee Kim;Chaehong Park;Hyeonjin Cho;Daeryul Kwon;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Targeting Microcystin (MC), which is most abundantly detected in the North-Han River water area, we analyzed the relationship between the MC biosynthesis gene (mcyA gene), cyanobacteria cell density, and MC concentration, derived an RNA-MC conversion formula, and derived the cyanobacteria. The concentration of MC present in cells was predicted. In the North-Han River waters, the mcyA gene was found mainly at downstream sites of the North-Han River after Muk-Hyeon Stream junction, and higher copy numbers were found on average than other sites. In the Uiam Lake waters upstream of the North-Han River, the mcyA gene copy number increased at the Kong-Ji Stream point, and after September, the mcyA gene copy number decreased throughout the North-Han River waters. The expression of the mcyA gene was concentrated in the short period of summer due to the spatio-temporal difference between upstream and downstream water bodies. The mcyA gene expression level was not only highly correlated with MC concentration, but also correlated with the cell density of Microcystis aeruginosa and Dolichospermum circinale, which are known to biosynthesize MC. Six conversion formulas derived based on the RNA-MC relationship showed statistical significance (p<0.05) and exhibited high correlation coefficients (r) of 0.9 or higher. The expression level of MC biosynthesis gene present in eRNA determines the synthesis of cyanotoxin substances in water, quickly quantifies gene activity, and can be fully utilized for early warning of MC development.

A Study on Real-time Autonomous Driving Simulation System Construction based on Digital Twin - Focused on Busan EDC - (디지털트윈 기반 실시간 자율주행 시뮬레이션 시스템 구축 방안 연구 - 부산 EDC 중심으로 -)

  • Kim, Min-Soo;Park, Jong-Hyun;Sim, Min-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.

Government Financial Support and Firm Performance: A Multilevel Analysis of the Moderating Effects of Firm and Cluster Characteristics (정부 자금지원과 기업 경영성과: 기업 및 클러스터 특성의 조절효과에 관한 다수준 분석)

  • Hee Jae Kim;Myung-Ho Chung
    • Journal of Industrial Convergence
    • /
    • v.22 no.1
    • /
    • pp.1-20
    • /
    • 2024
  • Regarding the discourse on the correlation between governmental financial support and firm performance, much emphasis has been placed on the role of individual corporate characteristics as well as spatial features. However, there is a notable scarcity of empirical research examining the integrated impact of corporate and cluster characteristics on managerial performance. This study addresses this gap by empirically analyzing the financial and non-financial outcomes resulting from specific allocations of governmental financial support. Additionally, it explores corporate and cluster characteristics predicted to moderate the influence between governmental financial support and firm performance. The analysis employs a two-level hierarchical linear model (HLM) at individual and group levels. The data, reorganized based on business registration numbers at the firm and cluster levels, ultimately utilized panel data from 83,395 firms and 641 clusters. The research findings indicate that governmental financial support demonstrates a positive effect (+) on both sales and patents for firms, suggesting its effectiveness in complementing market failures. Results from the hierarchical linear model analysis show that when combined with human capital capacity, absorptive capacity, and cluster network density, governmental financial support exhibits significant positive effects on sales. This study contributes theoretical and practical insights by analyzing the relationship between governmental financial support and firm performance using a two-level hierarchical linear model. It highlights the role of corporate characteristics such as human capital and absorptive capacity, along with cluster characteristics like cluster network density, in moderating the effects of governmental financial support on firm performance.

An Experimental Study to Predict the Concentration of Moving Tire and Road Wear Particles from Road to Ocean Environment (도로에서 해양 환경까지 이동하는 타이어 마모입자의 농도를 예측하기 위한 실험적 연구)

  • Tae-Woo Kang;Won-Hyun Ji
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.196-205
    • /
    • 2024
  • In this study, sample collection and quantification analysis of Tire and Road Wear Particles (TRWP) from the road surface were conducted to predict the amount of TRWP generated on the road surface moving by environmental compartment depending on rainfall intensity. Samples were collected from TRWP remaining on the road surface two days after the 3 days average rainfall (0-60 mm/day) occurred and the road surface was completely dry. Only TRWP were separated from the collected samples through size and density separation, and the difference in the content of TRWP remaining on the road surface after rainfall was based on the value of 60.2 g o f TRWP o n a day witho ut rain (0 mm/day). By calculating, it was co nfirmed that 0-49.4 g o f TRWP can mo ve to the environmental compartment depending on the intensity of rainfall. In addition, it was confirmed that when the rainfall intensity was 60 mm/day, the amount of TRWP moving to each environmental section was 3.75 times higher compared to 5 mm/day, and using the results of previous research, the total amount of TRWP that can be transported to the environmental compartment by rainfall from the domestic road environment annually is 9,592 tons, and 288 tons of this can be affected by marine microplastics. However, this study has limitations in terms of limited space and predicted results, but it would like to mention the need to improve the domestic road environment and sewage treatment system to reduce TRWP. In the future, we plan to conduct sample collection and concentration analysis studies of TRWP in real environmental compartments to verify the results of this study.