• 제목/요약/키워드: 공간데이터분석

검색결과 2,697건 처리시간 0.037초

정량적 강수추정기법에 따른 수리·수문학적 영향 평가 (The Evaluation of Hydraulic and Hydrology Effects on Methods of Quantitative Precipitation Estimation)

  • 손아롱;윤성심;최수민;이병주;최영진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.640-640
    • /
    • 2015
  • 2010년과 2011년 서울에서 발생한 집중호우와 2014년 부산에서 발생한 집중호우의 발생으로 막대한 재산상의 피해와 사상자를 냈다. 2010년 9월 21일에 발생한 집중호우는 1908년 관측시작이래 가장 많은 비가 내린 것으로 기록되었으며 주거지 4,727호, 상가 1,164호, 공장 126동 등이 침수되고 13시를 기준으로 강서지점의 경우 시간당 98.5mm의 기록적인 강우를 기록하였으나, 관악지점은 5.5mm에 그쳐 두 지점간의 시간당 강우량의 편차가 약 200배 가까이 차이가 나는 것으로 나타났다. 이와 같이 최근 도시지역에서 국지성 집중호우가 증가하고 있으며 지역별 강우 편차가 크고 이에 따라 침수피해발생 여부도 지역에 따라 달라진다. 강수의 공간적 분포와 그로 인한 침수해석은 도시돌발홍수 예경보 시스템에 있어 무엇보다도 중요하다. 본 연구의 목적은 도시지역 돌발홍수 예경보 시스템 구축을 위한 정량적 강수추정 QPE(Quantitative Precipitation Estimation)기법에 따른 수리 수문학적 영향을 평가하는 것이다. 정량적 강수추정을 위해 AWS, SKP, 레이더 자료를 활용하여 250m의 해상도를 가지도록 크리깅을 적용하였다: QPE 1은 34개의 AWS의 지점우량을 지구통계학적 기법 중의 하나인 크리깅을 이용하여 산정한 기법, QPE 2는 AWS와 156개의 SKP의 강우데이터를 크리깅을 이용하여 산정한 기법, QPE 3는 광덕산 레이더를 이용한 기법, QPE 4는 AWS, SKP, 광덕산 레이더 자료를 조건부 합성한 기법이다. 월류량을 산정하기 위해 도시유출해석모형인 SWMM을 강남역 일대를 대상으로 구축하고 우수관로 시스템으로 유입되지 못한 노면류(Surface flow)를 함께 고려하였다. 침수해석을 위해서는 DHM모델을 적용하였으며 2013년 7월 기간에 발생한 호우에 대하여 분석을 수행하였다. 비교수행을 위해서 인접한 서초 AWS와 강남 AWS의 지점강우량도 함께 고려하였으며 모의결과를 국가 재난관리 정보 시스템(NMDS)에 침수피해가 확인된 가옥 및 빌딩 정보와 일치여부를 적합도로 산정하였다. 산정된 적합도를 통하여 정량적 강수추정기법에 따른 수리?수문학적 영향을 평가하였다. 실제 침수흔적정보와 비교 결과, QPE 2와 QPE4가 가장 적합도가 높았으며 이에 따라 고밀도의 관측망의 구성이 도시지역 침수해석결과에도 적합할 것으로 판단된다.

  • PDF

종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기 (Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network)

  • 이현영;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.441-448
    • /
    • 2019
  • 기존의 자동 띄어쓰기 연구는 n-gram 기반의 통계적인 기법을 이용하거나 형태소 분석기를 이용하여 어절 경계면에 공백을 삽입하는 방법으로 띄어쓰기 오류를 수정한다. 본 논문에서는 심층 신경망을 이용한 종단 간(end-to-end) 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 자동 띄어쓰기 문제를 어절 단위가 아닌 음절 단위 태그 분류 문제로 정의하고 음절 unigram 임베딩과 양방향 LSTM Encoder로 문장 음절간의 양방향 의존 관계 정보를 고정된 길이의 문맥 자질 벡터로 연속적인 벡터 공간에 표현한다. 그리고 새로이 표현한 문맥 자질 벡터를 자동 띄어쓰기 태그(B 또는 I)로 분류한 후 B 태그 앞에 공백을 삽입하는 방법으로 한국어 문장의 자동 띄어쓰기를 수행하였다. 자동 띄어쓰기 태그 분류를 위해 전방향 신경망, 신경망 언어 모델, 그리고 선형 체인 CRF의 세 가지 방법의 분류 망에 따라 세 가지 심층 신경망 모델을 구성하고 종단 간 한국어 자동 띄어쓰기 시스템의 성능을 비교하였다. 세 가지 심층 신경망 모델에서 분류 망으로 선형체인 CRF를 이용한 심층 신경망 모델이 더 우수함을 보였다. 학습 및 테스트 말뭉치로는 최근에 구축된 대용량 한국어 원시 말뭉치로 KCC150을 사용하였다.

코로나19 팬데믹 기간의 서울의 사회적 거리두기 단계 변화와 The Suomi National Polar-Orbiting Partnership (S-NPP) 위성 영상을 이용한 Nighttime Light (NTL) 간의 상관관계 (Correlation Between Social Distancing Levels and Nighttime Light (NTL) during COVID-19 Pandemic in Seoul, South Korea Based on The Day-Night Band (DNB) Onboard The Suomi National Polar-Orbiting Partnership (S-NPP) Satellite)

  • ;이슬기;;한주
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1647-1656
    • /
    • 2021
  • 한국은 코로나19로 인한 감염전파를 줄이기 위해 4단계의 사회적 거리두기 기준을 설정하고 확진자 발생 비율을 기준으로 단계를 전환하여 시행하고 있다. 이러한 사회적 거리두기는 사람들의 이동 및 모임 등 사회적 접촉을 제한함으로써 시민들의 활동량에 변화를 가져왔다. 이를 직관적으로 확인할 수 있는 데이터 중 하나가 Night Time Light (NTL)이다. NTL은 인공위성에 포착된 불빛을 활용해 측정한 국가경제규모를 측정할 수 있는 변수로, 야간동안 사람의 사회 활동을 파악하는데 활용할 수 있다. NTL 자료는 수오미 위성(Suomi National Polar-orbiting Partnership, S-NPP)에 탑재된 센서인 Visible Infrared Imaging Radiometer Suite (VIIRS)에 포함된 Day-Night Band (DNB)를 통해 얻을 수 있다. 본 연구는 2019년 1월 5일부터 2021년 10월 26일까지 1023개의 Suomi 자료를 수집하고, 서울의 NTL 변화를 시계열로 생성하여 사회적 거리두기 단계와의 상관관계를 분석하였다. 그 결과 사회적 거리두기의 단계가 높아질수록 NTL의 공간적, 시간적 변화가 모두 감소된 것으로 나타났다. 이는 더 높은 단계의 사회적 거리두기 정책이 실행됨에 따라 야간 시간대의 상업 활동 및 모임 인원제한 등과 같은 사회적 활동의 제한이 실제로 서울의 NTL 감소에 영향을 준 것으로 해석할 수 있다. 본 연구는 향후 코로나19 관련 정부의 정책을 평가하고 개선하기 위한 참고자료로 활용할 수 있을 것이다.

농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석 (A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries)

  • 권수경;김경민;임중빈
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.291-304
    • /
    • 2021
  • 기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.

딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가 (Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning)

  • 이대건;조은지;이동천
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.469-481
    • /
    • 2018
  • 딥러닝은 인간의 학습 및 인지능력을 닮은 인공지능을 실현하기 위해 여러 분야에서 활용하고 있으며, 높은 사양의 컴퓨팅 파워가 요구되고 연산 시간이 많이 소요되는 복잡한 구조의 인공신경망에 의한 딥러닝은 컴퓨터 사양이 향상됨에 따라 성능이 개선된 다양한 딥러닝 모델이 개발되고 있다. 본 논문의 주요 목적은 영상의 딥러닝을 위한 합성곱 신경망 중에서 최근에 FAIR (Facebook AI Research)에서 개발한 Mask R-CNN을 이용하여 항공영상에서 건물을 탐지하고 성능을 평가하는 것이다. Mask R-CNN은 영역기반의 합성곱 신경망으로서 픽셀 정확도까지 객체를 의미적으로 분할하기 위한 딥러닝 모델로서 성능이 가장 우수한 것으로 평가받고 있다. 딥러닝 모델의 성능은 신경망 구조뿐 아니라 학습 능력에 의해 결정된다. 이를 위해 본 논문에서는 모델의 학습에 이용한 영상에 다양한 변화를 주어 학습 능력을 분석하였으며, 딥러닝의 궁극적 목표인 범용화의 가능성을 평가하였다. 향후 연구방안으로는 영상에만 의존하지 않고 다양한 공간정보 데이터를 복합적으로 딥러닝 모델의 학습에 이용하여 딥러닝의 신뢰성과 범용화가 향상될 것으로 판단된다.

UAS, CRP 및 지상 LiDAR 융합기반 와형석조여래불의 3차원 재현과 고증 연구 (A Study on the 3D Reconstruction and Historical Evidence of Recumbent Buddha Based on Fusion of UAS, CRP and Terrestrial LiDAR)

  • 오성종;이용창
    • 지적과 국토정보
    • /
    • 제51권1호
    • /
    • pp.111-124
    • /
    • 2021
  • 최근, 2019년 4월 15일에 있었던 노트르담 대성당 화재로 문화재 복원 및 재현에 대해 2008년 숭례문 화재사건 이후 관심이 다시 한 번 집중되고 있다. 특히, 기존에 활용되던 LiDAR 및 광파기 측량 등을 활용한 문화재 실측을 다양한 3차원 재현 기술을 활용하여 복원 및 재현하려는 연구가 활발히 진행되고 있다. 본 연구는 운주사의 와형석조여래불을 대상으로 최근 4차 산업혁명 시대에서 핵심기술로 자리매김한 UAV(Unmanned Aerial Vehicle)의 무인항공영상와 기존에 사진측량에 활용되던 근접영상(CRP) 및 지상 LiDAR 스캐닝을 활용하여 데이터를 획득하고, 이들을 3가지 융합모델로 SfM기반의 3차원 재현을 실시, 모델의 재현도 및 정확도를 비교·분석하였다. 아울러, 3가지의 모델 중 가장 우수한 융합모델을 활용하여 11세기 초 고려시대의 불교 천문학적 고증이 녹아있는 와형석조여래불을 실세계 좌표기반으로 북극성과의 연관성을 확인한다. 본 연구를 통해 문화재의 단순한 외형적인 3차원 재현뿐 아니라 문화재에 담긴 역사적 고증을 확인함으로써 문화재의 종류 및 형태에 따라 고증까지 함께 재현하는 방안을 모색하였다.

수동형 RFID 시스템에 적합한 효율적인 상호 인증 프로토콜 설계 (Efficient Mutual Authentication Protocol Suitable to Passive RFID System)

  • 원태연;천지영;박춘식;이동훈
    • 정보보호학회논문지
    • /
    • 제18권6A호
    • /
    • pp.63-73
    • /
    • 2008
  • RFID(Radio Frequency IDentification) 시스템은 일정한 라디오 주파수 대역을 이용해 무선 방식으로 각종 데이터를 주고받을 수 있는 시스템으로 기본적으로 태그(Tag)와 리더(Reader) 그리고 백-엔드-데이터베이스(Back-End-Database)로 구성된다. 태그에 쓰기(Re-Write)가 가능하고 무선공간에서 다수의 태그를 동시에 인식 가능하다는 장점으로 인해 기존의 바코드 시스템을 대체하여 물류관리, 유통관리, 재고관리 분야에서 널리 사용되고 있다. 그러나 태그와 리더가 무선 주파수를 이용하여 통신하기 때문에 시스템 보안과 개인 프라이버시 침해 문제가 발생한다. 현재까지 RFID 시스템의 이러한 문제를 해결하기 위해 많은 연구가 있었으며 그 결과 다양한 보안 기법들이 제안되었다. 하지만 제안된 많은 보안 기법들은 UHF대역의 국제 표준인 Class-1 Generation-2 태그에는 적용하기 어렵다. 최근에 Chien과 Chen은 Class-1 Generation-2 태그에 적합한 상호 인증 프로토콜을 제안하였지만 이 또한 취약성이 존재하며 데이터베이스에서의 효율성이 떨어지는 문제점이 있다. 따라서 본 논문에서 Chien과 Chen이 제안한 기법을 분석하고 안전성과 효율성을 향상된 새로운 상호 인증 기법을 제안한다.

터치스크린을 이용한 터치 위치기반 사용자 인증 (User authentication using touch positions in a touch-screen interface)

  • 김진복;이문규
    • 정보보호학회논문지
    • /
    • 제21권1호
    • /
    • pp.135-141
    • /
    • 2011
  • 최근 다양한 기능을 탑재한 모바일 장치가 보급되고 개인정보를 다루는 각종 응용들이 등장하면서 사용자에 대한 인증이 중요한 이슈가 되고 있다. 본 논문에서는 기존의 PIN 방식과 더불어 터치스크린 상에서 입력을 하였을 때 얻을 수 있는 터치 위치데이터를 인증에 이용하는 터치 위치기반 인증방법을 제안한다. 본 연구에서 제안하는 방식은 키 패드를 이용하는 기존의 PIN 입력 방식과 동일한 인터페이스를 이용하므로 호환성을 제공하며, 기존 PIN 입력 방식의 안전성을 높이는 방법 중 하나인 행위 분석 방식에 비해 사용자 등록 단계가 간소화되어 편의성을 제공한다. 사용자 인증 실험 결과에 의하면 서로 다른 사용자가 같은 PIN 및 전화번호를 입력한다고 가정할 때 4자리, 6자리 PIN 및 11자리 전화번호에 대해 각각 8.1%, 6.2%, 8.1%의 EER을 나타내었으며, 이를 사용자마다 다른 PIN 및 전화번호를 사용하는 상황에 적용하면 매우 높은 사용자 인식 성능을 보장할 수 있다. 또한 기존 PIN 입력 방식과 동일한 크기의 패스워드(PIN) 탐색 공간을 갖도록 파라미터를 설정한 후 수행한 공격 실험에 의하면 같은 안전성을 가지는 기존의 PIN 입력 방식에 비해 제안한 방식이 매우 높은 안전성을 가짐을 확인할 수 있었다.

자동 운량 관측에서 전천 영상 보정이 관측치에 미치는 효과 (Effect of All Sky Image Correction on Observations in Automatic Cloud Observation)

  • 윤한경
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.103-108
    • /
    • 2022
  • 광각 카메라 시스템으로 획득한 전천 영상을 이용한 구름 관측은 21세기 초반부터 다양한 연구가 진행되었으나 목측을 완벽하게 대체할 자동 관측 시스템은 얻지 못하였다고 판단된다. 본 연구는 목측의 자동화를 목표로 제안한 알고리즘의 최종 단계인 구름 관측의 정량화를 검증하기 위하여 전천 영상과 보정 영상의 구름 분포를 비교 분석하였다. 그 이유는 구름은 종류에 따라 일정한 높이에 형성되고, 전천 영상은 망막의 영상처럼 렌즈의 중심부는 확대되고 가장자리는 축소되지만, 인간의 학습 능력과 공간 인지 능력 등이 구름 관측에 미치는 영향은 알려진 바가 없기 때문이다. 본 연구 결과는 전천 영상과 보정 영상의 구름 관측 오차가 평균은 1.23%였다. 따라서 10분위 또는 10단계로 관측되는 목측과 비교하면 보정에 의한 오차는 관측량의 1.23%로 목측의 허용 오차보다 매우 적을뿐만 아니라 인간의 실수를 포함하지 않으므로 정확히 정량화된 데이터의 수집이 가능함을 확인하였다. 또한 보정에 의한 운량의 변화가 미미하므로, 불필요한 보정 단계를 생략하고 보정 이전의 전천 영상에서 운량을 관측하여도 정확한 관측치를 얻을 수 있음을 확인하였다.

에지 컴퓨팅 환경에서 비콘을 활용한 특수건물 화재 경보 시스템 개선 방안 연구 (A Study on the Improvement of Fire Alarm System in Special Buildings Using Beacons in Edge Computing Environment)

  • 이태규;최경서;신연순
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권7호
    • /
    • pp.217-224
    • /
    • 2022
  • 오늘날 기술과 산업의 발전으로 특수건물이 늘어남에 따라 특수건물 내 화재 사고가 증가하고 있다. 그러나 정보통신기술의 빠른 발전에도 불구하고 낙후되고 실효성을 갖추지 못한 실내 화재 경보 시스템을 사용함으로 인해 인명 피해가 꾸준히 발생하고 있다. 본 연구에서는 음향경보를 이용하는 기존 실내 화재 경보 시스템이 건물 내 인원들에게 충분한 경보를 전달하지 못하는 '경보의 사각지대 문제'를 개선하고자 에지 컴퓨팅과 비콘을 활용한 화재 경보 시스템을 설계하고 구현하였다. 제안하는 개선된 화재 경보 시스템은 말단 센서 노드와 에지 노드, 사용자 애플리케이션, 서버로 구성된다. 말단 센서 노드는 실내 환경 데이터를 수집하여 에지 노드로 전송하고, 에지 노드는 전송받은 정보를 기반으로 화재 발생 여부를 모니터링 한다. 또한 에지 노드는 비콘 신호를 지속적으로 발생시켜 신호 범위 내의 사용자 애플리케이션이 설치된 스마트기기의 정보를 수집하여 서버 데이터베이스에 저장하고, 화재 발생 시 수집한 기기들의 정보를 바탕으로 모든 재실 인원에게 애플리케이션 푸시 형태로 화재 경보를 전송한다. 구현한 화재 경보 시스템의 적용 가능성을 검증하기 위해 강의실이 밀집한 대학교의 한 건물에서 신호 유효 범위 측정 실험을 진행한 결과, 에지 노드의 비콘 신호 범위 내에서 정상적으로 기기 정보를 수집하고, 수집한 정보를 바탕으로 특정 사용자들에게 신속하게 화재 경보를 전송함을 확인하였다. 이를 통해 수시로 변하는 출입자들의 정보를 유동적으로 수집하고, 이를 바탕으로 사용자와 매우 인접한 스마트기기로 경보를 전송함으로써 '경보의 사각지대 문제'를 해결하는데 적용할 수 있음을 확인하였다. 또한 실험 결과 분석을 통해 제안하는 화재 경보 시스템을 실내 공간의 특징에 따라 효과적으로 적용하는 방안을 제시하였다.