• Title/Summary/Keyword: 공간다이버시티

Search Result 135, Processing Time 0.022 seconds

Performance Analysis of Single Hop Cooperative Relay Spectrum Sensing (단일 홉 릴레이 협력 스펙트럼 센싱의 성능 분석)

  • Lee, Mi Sun;Kim, Yoon Hyun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • In this paper, we proposed spectrum sensing using cooperative relay to solve problem of sensing performance degradation due to CPE (Customer-Primise equipments) which causes low SNR (signal-to-noise ratio) problem. This system model is expected that cooperative relay scheme guarantees the high sensing performance by its diversity gain. Based on these backgrounds, in this paper, we apply to cooperative relay scheme to the CR (cognitive radio) system, and simulation results show comparison of the sensing performance combining method EGC and MRC.

Efficient Symbol Detection Algorithm for Space-frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법을 위한 효율적인 심볼 검출 알고리즘)

  • Jung Yun ho;Kim Jae seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.283-289
    • /
    • 2005
  • In this paper, we propose two efficient symbol detection algorithms for space-frequency OFDM (SF-OFDM) transmit diversity scheme. When the number of sub-carriers in SF-OFBM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithms eliminate this interference in a parallel or sequential manlier and achieve a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithms is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithms achieve the gain improvement of about 3 dB. The symbol detectors with the proposed algorithms are designed in a hardware description language and synthesized to gate-level circuits with the $0.18{\mu}m$ 1.8V CMOS standard cell library. With the division-free architecture, the proposed SF-OFDM-PIC and SF-OFDM-SIC symbol detectors can be implemented using 140k and 129k logic gates, respectively.

Improved Double STBC-OFDM with Component Interleaver (컴포넌트 인터리버가 적용된 이중 시간 및 공간 부호화 직교 주파수 분할 다중화 시스템)

  • Kim, Young-Ki;Hwang, Soon-Up;Seo, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.247-250
    • /
    • 2008
  • 본 논문에서는 다중안테나-직교 주파수 분할 다중화(multiple input multiple output orthogonal frequency division multiplexing, MIMO-OFDM)시스템 중 공간 다중화와 전송 다이버시티 이득을 동시에 얻기 위해 제안된 double space-time block code(D-STBC) OFDM 시스템에 대해 기존 수신 기법인 그룹단위 간섭 제거 기법의 문제점을 보완하는 새로운 간섭 제거 기법을 제안한다. 또한 STBC의 다이버시티 이득을 극대화 할 수 있는 컴포넌트 인터리버 구조를 송수신단에 추가함으로써 수신 성능을 크게 향상시킨다. 이동방송 수신을 고려한 빠른 시변 채널환경에서의 전산 모의 실험을 통해 STBC의 부호직교성 상실로 인한 성능열화 현상이 개선됨을 보이고 다비어시티 이득에 의해 수신 성능 향상을 확인한다.

  • PDF

On the Gain of Component-Swapping Technique in LDPC-Coded MIMO-OFDM Systems (DVB-T2 16K LDPC 부호가 적용된 MIMO-OFDM 시스템에서의 성분 맞교환 기술 이득)

  • Jeon, Sung-Ho;Yim, Zung-Kon;Kyung, Il-Soo;Kim, Man-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.164-167
    • /
    • 2010
  • `신호 공간 다이버시티(Signal Space Diversity)'기술은 DVB-T2 표준에 포함된 기술로써, 추가적인 전력이나 대역폭의 희생없이 검파에 있어 성능 이득을 얻을 수 있어 DVB-T2 물리계층 핵심적인 기술 중 하나로 평가받으며, 후속 표준인 DVB-NGH 에도 적용 가능성이 높은 기술이다. 본 논문에서는 '신호 공간 다이버시티' 기술을 MIMO 시스템으로 확장하기 위해서 발생하는 문제점에 대해서 분석한 뒤, 이를 해결하기 위해 제안된 '성분 맞교환(Component-Swapping)' 기술을 현재 논의 중에 있는 DVB-NGH 시스템에 적용하여 주어진 실험 환경에서 2.2~3.0dB 가량의 이득을 가짐을 실험적으로 확인하였다.

  • PDF

Adaptive MIMO Transmission Method based on the Optimal Combination of Antenna Diversity with Spatial Multiplexing (안테나 다이버시티와 공간 다중화의 조합에 기초한 적응적 MIMO 전송 기법)

  • Kim, Dae-Hyun;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.394-401
    • /
    • 2007
  • MIMO transmission systems can have various transmission modes, which result from the various combinations of the antenna diversity with spatial multiplexing. In this paper, we find the optimal mode to maximize the capacity with the BER constraint and the optimal selection (diversity transmission or spatial multiplexing transmission) for transmission of each transmission antenna, if necessary. The computer simulation results show that the proposed scheme has more capacity than the conventional scheme.

Improvement of IF In-Phase Combiner for Space Diversity Technique of Digital Radio Relay System (디지털 무선 전송장치의 공간 다이버시티 기술을 위한 IF 동위상 결합기의 성능 개선)

  • 서경환
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.8-17
    • /
    • 1999
  • In this paper, a proposal for improving the performance of IF in-phase combiner is presented in view of simple hardware design and good performance for space diversity application. By adding the stable normalization circuit to the phase detector, better performances are obtained even for a severe notch depth of 30 dB. To check the validity of this proposal, various results based upon numerical simulation and laboratory test are presented here in conjunction with 64-QAM digital radio relay system.

  • PDF

Error Rate Performance of FH / MFSK Signal with space Diversity Techniques in the Environments of Interference and Rayleigh Fading (공간 다이버시티 기법을 이용하는 FH/MFSK 신호의 간섭과 레일리 페이딩 환경하에서의 오류 확률 특성)

  • Lee, Moon-Seung;Leem, Kill-Yong;Lee, Jin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.3-13
    • /
    • 1994
  • In the environments with interference and Rayleigh fading the bit error probability equation of FH / MFSK signal has been derived and the error rate has been evaluated. And the results are shown in graphs and discussed. The degree of improvement of error rate performance has been found out in space diversity technique. From the results, we know that maximal ratio combining is very effective for Rayleigh fading and interference.

  • PDF

Opportunistic Interference Alignment Based on Dynamic Cell Selection (동적 셀 선택 기반 기회적 간섭 정렬)

  • Seo, Jongpil;Kim, Jaeyoung;Kim, Hyeonsu;Chung, Jaehak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.956-964
    • /
    • 2012
  • An opportunistic interference alignment based on dynamic cell selection is proposed. Since the proposed method can switch the desired signal space and the interference space of received signals, an additional selective diversity gain increases. The performance analysis using probabilistic models provides a mathematical expression for the sum-rate capacity. Simulation examples show that the proposed method achieves the higher sum-rate capacity than that of the conventional opportunistic interference alignment.

Signal Design of grouping Quasi-Orthogonal Space Time Block Codes on the Multi-dimensional Signal Space (다차원 신호 공간에서 그룹 준직교 시공간 블록 부호의 신호 설계)

  • Yeo, Seung-Jun;Heo, Seo-Weon;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper proposes the signal design techniques of quasi-orthogonal space time block codes (QO-STBCS) on the multi-dimensional signal space. In the multiple antenna system(MIMO), QO-STBC achieves the full-diversity and full-rate by grouping two based-symbols. We study the condition for the full-diversity of the grouping QO-STBC geometrically and the performance analysis of codes on the multi-dimensional signal space regarding the various signal constellations. Simulation results show that the way of the performance analysis is validity.

Bandwidth-Efficient Mutually Cooperative Relaying with Spatially Coordinate-Interleaved Orthogonal Design (공간적으로 좌표 재배열된 직교 설계 기반의 대역 효율적인 상호협력 통신 기법)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.815-821
    • /
    • 2009
  • In this paper, we propose a new type of mutually cooperative relaying (MCR) scheme based on a spatially coordinate-interleaved orthogonal design (SCID), in which two cooperative users are spatially multiplexed without bandwidth expansion. It provides not only diversity gain (with order of two) as in the existing MCR scheme, but also additional coding gain. Our simulation results demonstrate that the proposed SCID scheme is useful for improving the uplink performance as long as one user can find another active user as a close neighbor that is simultaneously communicating with the same destination, e.g., a base station in the cellular network.