• Title/Summary/Keyword: 골조 설계

Search Result 366, Processing Time 0.026 seconds

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

Approximate Analysis of Shear Wall-Frame Structure For Seismic Design (전단벽-골조 시스템의 내진설계를 위한 근사해석법)

  • Yoo, Suk-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2019
  • A wall-frame structure resists horizontal load by the interaction between the flexural mode of the shear wall and the shear mode of the frame, which implies that the frame deflects only by reverse bending of the columns and girders, and that the columns are axially rigid. However, as the height of frame increases the shear mode of frame changes to flexural mode, which is due to the extension and shortening of the columns. An approximate hand method for estimating horizontal deflection and member forces in high-rise shear wall-frame structures subjected to horizontal loading is presented. The method is developed from the continuous medium theory for coupled walls and expressed in non-dimensional structural parameters. It accounts for bending deformations in all individual members as well as axial deformations in the columns. The deformations calculated from the presented approximate method and matrix analysis by computer program are compared. The presented approximate method is more accurate for the taller structures.

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

Plastic Shear Hinges for the Seismic Design for Steel Building Structures (철골 건축구조물의 내진설계를 위한 소성 전단 힌지)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.25-29
    • /
    • 1990
  • 고층건축구조물의 내진설계에서는 강성, 강도와 연성사이의 균형이 적절하게 유지되어야 한다. 이 글은 철골고층건물의 대표적인 구조시스템인 모멘트 골조와 가새골조의 내진거동에 대한 이해를 넓히고자 최근 연구되어온 Panel Zone과 Link Beam의 거동에 대한 결과와 설계시 유의사항을 간략하게 소개하였다.

  • PDF

Development of the Rebar Auto Placing System Using 3D Structural Information Model (3차원 골조정보모델을 이용한 철근배근 자동생성 시스템)

  • Lee, Byeong-Kwun;Kim, Chee-Kyeong;Kim, Gye-Joong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.72-75
    • /
    • 2009
  • 본 논문에서는 현재 국내에서 구축되어 있지 않은 3차원 BIM 기반 설계 및 시공 환경으로의 패러다임 전환에 대비하여 3차원 BIM 지향적 구조설계 프로그램인 SDP 제품군을 사용하여 BIM 프로그램들을 연동한 3차원 BIM 철근배근 자동생성 시스템을 개발하고자 한다. 현재 국내 건설업계의 치열한 수주경쟁으로 수익률저하/철근 등 자제가 폭등/인건비 상승/배근시공도 작성 인력 부족 및 신뢰성 저하 및 납기 지연 등의 기존 현황의 문제점 등을 SDP 제품군을 이용하여 구조설계/배근시공도 작성/정밀 골조물량 산출을 통합 지원하는 엔지니어링 컨설팅 환경을 구축하여 구조설계 시 V/E 동시 수행, 골조공사비 10% 절감, 배근시공도 및 물량산출 납기 최소로 단축, 배근시공도 정확성 향상/설계 및 시공 변경에 신속 대응, 공정 대비 발주 물량 관리 기능을 제공함으로써 고수익, 고효율, 고품질 의 엔지니어링 컨설팅 수행이 가능하다. 3차원 BIM 을 기반으로 철근현장가공에서 공장가공 전환 가속화로 국가적 물량 절감을 기대할 수 있고, 3차원 BIM 구조설계 및 골조공사 환경 구축 및 기술 자립을 통해 건설시공 분야의 기술력 향상을 기대할 수 있다.

  • PDF

Seismic Energy Response of Steel Moment Resisting Frames with Mass Irregularity (질량비정형을 갖는 강 모멘트 저항 골조의 지진에너지 반응)

  • Choi, Byong-Jeong;Song, In-Hawn
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.213-220
    • /
    • 2003
  • 고층의 강 모멘트저항골조에 대한 지진 반응을 살펴보기 위해서 동적해석을 실시하였다. 구조물은 세가지의 다른 설계절차로 의도적으로 설계하였고 그 세가지의 개념은 강도 지배설계, 강기둥-약보 지배설계, 횡변위 지배설계이다. 그렇게 설계한 구조물이 각각 질량비정형이 존재하도록 하여 힁변위, 소성힌지, 이력에너지 입력 및 요구응력에 대해서 토론하였다. 미래에 설계에의 응용을 위해서 최대 지반가속도로 표현한 두 등급의 지진 하중을 이용해서 이력에너지 입력요구 곡선을 제시하였다.

  • PDF

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

Seismic Performance Evaluation of Highrise Steel Diagrid Frames (초고층 철골대각가새골조의 내진성능평가)

  • Kim, Seon-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2011
  • This paper is to investigate the possibility of the elastic seismic design for highrise buildings through seismic performance evaluation for potential earthquakes that wind-designed highrise buildings located in strong wind zone and low seismicity can be experienced. Highrise steel diagrid frames which is the most loved structural system in recent years were wind-designed and the substantial system overstrength due to wind design procedure is verified, For the highrise steel diagrid frames, the response spectrum analysis and the seismic performance evaluation by various soil sites were conducted. It was showed that highrise steel diagrid frames with slenderness of greater than 5.2 under strong wind and low seismic zones such as Korea peninsula can resist elastically for the 500 year return period earthquake and have the possibility of seismic design for the 2400 year return period earthquake. In the member level, highrise steel diagrid frames with slenderness of greater than 5.2 all presented the immediate occupancy level regardless of soil sites for the 500 year return earthquake and excluding the $S_E$ soil site for the even 2400 year return period earthquake. In the system level, highrise steel diagrid frames with slenderness of greater than 5.2 showed the immediate occupancy level for $S_A$ and $S_B$ soil sites and the life safety for $S_C$ to $S_E$ soil site in the 500 year return period. The seismic performance level of highrise steel diagrid frames for the 2400 year return period earthquake displayed one step lower than the 500 year return period earthquake.

The Structural Performance of PSC Frame System with GerberCs beam (게르버 보 형식의 PSC 골조시스템의 구조성능)

  • Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jong-Gyu;Song, Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.341-346
    • /
    • 2002
  • 이 연구는 게르버 보 형식의 포스트텐션 PC 골조 구조 시스템의 실용화를 위해 골조 전체의 구조 성능 시험을 수행하며, 여기서 보-기둥 접합부 및 내민 보-단순 보 접합부의 구조 성능과 골조의 안전성을 확인한다. 시험은 400 mm$\times$800 mm 단면의 경간 3 m 보와 500 mm$\times$600 mm 단면을 갖는 높이 3 m 기둥의 실물 크기 시험체를 제작하여, 기둥에 80 톤의 축 하중을 준 상태에서 단순 보 중앙에 하중을 가력하여 기둥-보 접합부와 단순 보-내민 보 단면 축소 연결부의 구조성능을 파악한다. 시험 결과, 보 - 기둥 접합부는 예상 설계 하중 40톤 이상에서도 강 접합에 가깝게 거동하였고, 단순 보- 내민 보의 단면 축소 연결부는 경사철근의 사용으로 초기 균열 및 균열 확산에 대한 억제 효과가 있었으며, 예상 설계 전단력 40톤에서 안전하다는 것이 확인되었다.

  • PDF