• Title/Summary/Keyword: 골조의 해석

Search Result 444, Processing Time 0.036 seconds

Analytical Investigation for Improved Design Models of Chevron Braced Frames (역V형 가새 골조의 개선된 디자인 모델을 위한 해석적 연구)

  • Yoo, Jung-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.73-78
    • /
    • 2009
  • Steel Braced frames are a commonly-used seismic resisting system, and chevron steel braced frames are a frequently used type of steel braced frame. Recent research has indicated that the seismic performance of braced frames can be improved by designing the braced frame gusset plate connections in a manner that direct reflects seismic deformation demands, and by permitting yielding in the gusset plate at select performance levels. A parametric study using Finite Element (FE) models was conducted to examine the influence of the gusset plate and framing elements on the seismic performance of chevron braced frames, and to calibrate and develop improved design models. The impact of the frame details, including frame sizes, clearance requirements, gusset plate thickness and tapered plate, was explored. The results suggested that proper detailing of the connection can result in a significant improvement in the frame performance. The results also show that the gusset plate thickness has a significant impact on frame performance.

Evaluation of the Second Order Analysis of Unbraced Frame by using load amplification factor (하중증폭계수를 적용한 비가새 골조 2차 해석 평가)

  • Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2009
  • The purpose of this study was to evaluate the validity of the second-order analysis using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factor suggested by KBC 2009 (draft) were performed for three-story -one-bay and five-story-three-bay unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the scale of the frame, the axial load ratio of the column, and the methods of analysis. The research results showedthat the method suggested by KBC 2005 does not properly consider the second-order effect under the high axial load ratio, but the direct analysis method suggested by KBC 2009 (draft) properly estimates the second-order effect without any serious problem.

A Modified Equivalent Frame Model for Plat Plate Slabs Under Lateral Loads (수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델)

  • Han Sang-Whan;Park Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.419-426
    • /
    • 2005
  • This study is to propose a modified equivalent frame model for flat plate slabs under lateral loads. ACI 318 (2002) allows equivalent frame methods to conduct two-way slab system analysis subjected to gravity loads as well as lateral loads. Since the equivalent frame method in the ACI 318 (2002) has been developed base on the behavior of two-way system for gravity loads, and nay not predict the behavior of flat plate slabs under lateral loads with good precision. This study develops a modified equivalent frame model which can give more precise answer for flat plate slabs under lateral loads. This model reflects the actual force transfer mechanism among the components of flat plate slab system, which are slabs, columns and torsional members, more accurately under lateral loads than existing equivalent frame models. The accuracy of this model is verified by comparing the analysis results using the proposed model with the results of finite element analysis. The analysis results of other existing models are included in the comparison. For this purpose, 2 story building having 3 spans in both directions is considered. Analytical results show that the modified equivalent frame model produces comparable drift and slab internal moments with those obtained from finite element analysis.

Evaluation of the Second Order Analysis of Asymmetric Unbraced Frame by using Load Amplification Factor (하중증폭계수를 적용한 비대칭 비가새 골조 2차 해석 평가)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.87-97
    • /
    • 2010
  • The purpose of this study was to evaluate the validity of the second-order analysis for asymmetric unbraced frame using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factors suggested by KBC 2009 were performed for five story - two bay and five story - four bay asymmetric unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the shape of the frame, the axial load ratio of the column, the methods of analysis and the location of column. The research results show that the asymmetric shape of the frame deteriorates the validity of the factor B2 and the suggested methods. The range of error is increased in case of irregular or inclined column.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Vertical Direction Redistribution of Beam Moments in the Seismic Design of RC Frame (RC 골조의 내진설계에서 보 모멘트의 수직방향 재분배)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • For the lateral load resistance of a RC frame in a medium risk seismic zone, the strength of lower story beams and columns should be larger than those of the upper stories. However, the lateral loads can be accommodated by redistributing design beam moments vertically as well as horizontally so all beams end up with identical strengths. This paper looks at the impact of the vertical redistribution of beam moments to provide identical beam strength over as many floors as possible. Two-bay six-story RC frame was designed with and without vertical beam moment redistribution and its seismic performance were evaluated by using push-over limit analysis and by non-linear time history dynamic analysis. Analytical results show that with the use of vertical beam moment redistribution the increase in the ductility demand is similar to the proportion of moment redistribution applied, but this additional demand is below the ductility capacity of well detailed RC members.

Degradation Characteristics of Symmetric Unbraced Steel Frames According to Variations of Member Stiffness and Axial ratio (축력비 및 부재강성에 따른 강구조 대칭형 비가새 골조의 열화특성)

  • Lee, Myung-Jae;Kim, Hee-Dong;Lim, Yoo-Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.327-335
    • /
    • 2011
  • This study has two objectives: (1) to evaluate the degradation characteristics of symmetric unbraced steel frames by using analytical approach, and (2) to suggest equation which can approximately estimate the effect of degradation during the schematic design stage. For the analytical approach, the refined plastic hinge method with an arc length algorithm was adopted. The subject of analysis was one story one-bay, multistory one-bay, and multistory three-bay unbraced steel frames. The main parameters of the analytical approach include the stiffness ratio of column to beam and the axial force ratio. The study led to the following conclusions. The normalized stiffness of degradations is affected by both stiffness ratio of column to beam and the axial load ratio; however, the major influence on degradations is the axial force ratio. The equation, which can approximately estimate the effect of degradation, was suggested together with the research results.

Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Reinforced Concrete Frame with Non-seismic Details (비내진 상세를 가진 1:12축소 10층 R.C.골조의 비선형 거동에 대한 실험과 해석의 상관성)

  • Lee, Han-Seon;Kang, Kyi-Yong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.267-277
    • /
    • 1999
  • The pushover analysis technique is now attracting the world-wide interest for the prediction of elastic and inelastic behavior of structures in the seismic evaluation of existing buildings. However, the reliability of this analysis technique has not been fully checked by the test results in the case of structures with nonseismic details. The objective of this study is to verify the correlation between the experimental and analytical responses of a 1:12 scale 10-story reinforced concrete frame with non-seismic details by using DRAIN-2DX program and the test results performed previously. It is concluded from this comparison that the overall responses such as the relations between story shear versus interstory drift and the local deformations such as plastic rotations can be predicted with quite high reliability.

A Study on the Analysis of Plane Framework Considering Nonlinearity of Member and Rotational Stiffness of Connections Joining the Beams to the Columns (부재 비선형과 접합부의 회전강성을 고려한 골조의 해석에 관한 연구)

  • 김경수;윤성기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • 본 연구에서는 골조의 안정과 구조적인 거동에 영향을 미치는 2차 효과에 의한 기하학적 비선형 문제, 세장비가 작은 부재 단면의 소성, 보-기둥 접합부의 상태, 그리고 부재 내부에 발생되어 있는 기하학적 초기결함을 고려한 복합적인 비선형 해석프로그램을 개발하여, 철골조 구조물의 거동을 근사적으로 예측하고자 한다. 그리고, 각 비선형 해석의 신뢰성을 검증하고, 상호관계를 파악되기 위해서 각 해석에 따른 좌굴하중과 거동을 비교 검토한다.

  • PDF

플로팅 함체의 시공단계별 수직처짐의 영향

  • Lee, Yeong-Uk;Chae, Ji-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.422-424
    • /
    • 2012
  • 본 연구에서는 수상위에 진수된 콘크리트 플로팅 폰툰에 상부골조를 단계별로 시공함에 따라 발생하는 추가 처짐이 상부골조에 미치는 영향을 고찰하고 하였다. 이러한 추가변형에 의한 상부골조에 추가 모멘트량을 산정하는 해석절차를 제시하였으며 제시된 절차에 따라 3층 예제 철골 건물을 해석하고 분석하였다. 제시된 시공단계를 고려한 해석 방법과 비교하여, 상부골조를 지반위에 고정하여 모델링하는 일반적인 해석은 수직하중에 의한 변형을 무시하여 설계하중을 과소평가 하며, 플로팅 구조물을 전체적으로 모델링하고 하부 폰툰에 등가의 스프링으로 치환하여 하중을 동시에 재하하는 모델은 과대한 처짐의 영향으로 설계하중을 과대 평가함을 알게 되었다.

  • PDF