• 제목/요약/키워드: 골재치환률

Search Result 48, Processing Time 0.096 seconds

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF

Physical Properties Evaluation of Porous Concrete according to Target Porosity and Pumice Contents Ratio for Application of the Aquatic Environment (수계환경 적용을 위한 설계공극률 및 부석 혼입률에 따른 포러스콘크리트의 물리적 특성 평가)

  • Kim, Woo-Suk;Park, Jae-Roh;Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.703-711
    • /
    • 2016
  • The present study is mainly aimed at securing adequate pores which are applicable to the aquatic environment and satisfying the required strength of porous concrete as a structure by substituting pumice for crushed stone which is usually used for the fabrication of porous concrete. Accordingly, in order to deduce the optimum mixing conditions applicable to the aquatic environment, we sought to evaluate the porosity, coefficient of permeability and compressive strength of porous concrete based on the target porosity and the mixing factors for pumice. By examining the porosity and coefficient of permeability of porous concrete and the physical properties of its compressive strength based on the target porosity and the mixing factors for pumice, it is judged that the optimum mixtures for porous concrete applicable to the aquatic environment which satisfy both the necessity of securing adequate pores and the required strength for porous concrete as a structure are PC I I-10-0, PC I I-10-5 and PC I I-10-10.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Experimental Study of Flexural Behavior of Reinforced Concrete Beams with Different Types of Coarse Aggregates (순환골재 치환률에 따른 철근콘크리트 보의 휨거동에 관한 실험적 연구)

  • Lee, Young-Oh;Jeon, Esther;Yun, Hyun-Do;You, Young-Chan;Kim, Keung-Hwan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.45-48
    • /
    • 2006
  • This study is to evaluate flexural behavior of RC beam with different types of coarse aggregates, so called natural or recycled aggregate. Two reinforced concrete beams were manufactured with different replacement level of recycled coarse aggregates : Concrete made with 0% of coarse aggregates, concrete made with 100% of recycled coarse aggregates. From the test, the general flexural performances of RC beams with different types of coarse aggregates such as cracking moment, crack patterns, maximum moment/crack width are discussed.

  • PDF

Evaluation of Mechanical Properties and Alkali-Silica Reaction of High Strength Mortar Using Waste Glass Sand (폐유리 잔골재를 치환한 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응 평가)

  • Eu, Ha-Min;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.528-536
    • /
    • 2020
  • In this study, high strength mortar and normal strength mortar using waste glass sand were evaluated. The main parameters studied were mechanical properties, alkali-silica reaction(ASR) and residual mechanical properties after ASR. As a result of this experiment, it was found that the increase in strength of the mortar has a limitation in improving the slip of the waste glass sand(GS), and rather, it causes a larger ASR. However, the possibility of improving the slip of GS was confirmed by the temporary increase of initial residal compressive and flexural strength of the mortar containing GS after the ASR. Therefore, to improve the slip of GS, the additional research is required, such as modification of the surface of GS and the incorporation of a binder which can increase the strength and makes matrix compact.

Electromechanical Properties of Smart Repair Materials based on Rapid Setting Cement Including Fine Steel Slag Aggregates (제강 슬래그 잔골재가 혼입된 초속경 시멘트 기반 스마트 보수재료의 전기역학적 특성)

  • Tae-Uk Kim;Min-Kyoung Kim;Dong-Joo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • This study investigated the electromechanical properties of cement based smart repair materials (SRMs) according to the different amounts of fine steel slag aggregates (FSSAs). SRMs can self-diagnose the quality of repairing and self-sense the damage of repaired zone. The replacement ratios of FSSAs to sand for SRMs were 0% (FSSA00), 25% (FSSA25), and 50% (FSSA50) by sand weight. The electrical resistivity of SRMs generally decreased as the compressive stress of SRMs increased: the electrical resistivity of FSSA25 at the age of 7 hours decreased from 78.16 to 63.68 kΩ-cm as the compressive stress increased from 0 to 22.37 MPa. As the replacement ratio of FSSAs by weight of sand increased from 0% to 25%, the stress sensitivity coefficient (SSC) of SRM at the age of 7 h increased from 0.471 to 0.828 %/MPa owing to the increased number of partially conductive paths in the SRMs. However, as the replacement ratio of FSSAs further increased up to 50%, the SSC decreased from 0.828 to 0.649 %/MPa because some of the partially conductive paths changed to continued conductive ones. SRMs are expected to self-sense the quality and future damage of repaired zone only by measuring the electrical resistivity of the repaired zone in addition to fast recovery in the mechanical resistance of structures.

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Yoon, Ki-Hyun;Jung, Kang-Sik;Kim, Gang-Ki;Paik, Min-Su;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.413-416
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

The Durability of the Concrete Using Bottom Ash as Fine Aggregate (바텀애시를 잔골재로 사용한 콘크리트의 내구성능에 관한 연구)

  • Park, Seung-Ho;Lee, Jeong-Bae;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.349-355
    • /
    • 2016
  • This study is about the reuse of bottom ash, which is released as a necessity in thermal power plant. In general, coal-ash are classified as fly-ash, bottom-ash, cinder-ash. Of these, a large amount of fly ash is being recycled as cement substitutes. While, recycling rates of bottom ash are the lowest due to its porosity and high absorption. In this study, the durability of the concrete using bottom ash as a concrete fine aggregate was evaluated. The using level of the bottom ash ranges to step-by-step from 0% to 30%. According to the result of the durability test, regardless of the presence of the bottom ash, freeze-thaw durability could be secured by air entrainment. In case of the resistance to chloride ions penetration, the length change, and the effects on heavy metals, the replacement of bottom ash as fine aggregate was not critical. Although carbonation penetration was higher as the replacement level of bottom ash increased, the experiment showed that it could be possible to use bottom ash as concrete fine aggregate with proper mix design.