• Title/Summary/Keyword: 골단판 유리술

Search Result 2, Processing Time 0.018 seconds

Surgical Treatment for Longitudinal Epiphyseal Bracket of the Finger (수지의 종적 Bracket 골단에 대한 수술적 치료)

  • Kim, Sung Soo;Kim, Ki Woong;Kim, Jung Ho;Lee, Chan Soo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.154-161
    • /
    • 2020
  • Purpose: To describe the clinical and radiology results of a surgical treatment for clinodactyly due to a longitudinal epiphyseal bracket. Materials and Methods: This study analyzed the records of 11 patients (27 case) with clinodactyly due to a longitudinal epiphyseal bracket who underwent an osteotomy or physiolysis between March 1999 and April 2017. The preoperative range of motion of the proximal and distal interphalangeal joints, the subjective satisfaction of the patient, and the degree of angulation to the ulnar side were examined. The patients were classified into two groups: osteotomy and physiolysis. The results were reviewed retrospectively and compared according to the surgical method. Results: The mean age of the patients who underwent osteotomy was 10.3 years. The average preoperative angle was 25.7° and the average postoperative angle was 13.5° the mean correction rate was 47.4%. The mean age of the patients who underwent physiolysis was 6.0 years the mean preoperative angle was 24.5° and the postoperative angle was 10.7°. The average correction rate was 59.4%. No significant difference in the correction angles was observed between the group who underwent the correction osteotomy and the group who underwent the osteotomy. In each group, the postoperative correction was statistically significant. The range of motion at the last follow-up was not significantly different from the preoperative range of motion. Conclusion: In patients with clinodactyly due to longitudinal epiphyseal bracket, osteotomy or physiolysis may be performed selectively according to age, bone age, and radiological progression. Both surgical methods showed good clinical results and deformity correction.

Numerical Analysis on Stress Distribution of Vertebra and Stability of Intervertebral Fusion Cage with Change of Spike Shape (척추체간 유합케이지의 스파이크형상 변화에 따른 척추체의 응력분포 및 케이지의 안정성에 대한 수치적 해석)

  • 심해영;김철생;오재윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • The axial compressive strength, relative 3-D stability and osteoconductive shape design of an intervertebral fusion cage are important biomechanical factors for successful intervertebral fusion. Changes in the stress distribution of the vertebral end plate and in cage stability due to changes in the spike shape of a newly contrived box-shaped fusion cage are investigated. In this investigation, the initial contact of the cage's spikes with the end plate and the penetration of the cage's spikes into the end plate are considered. The finite element analysis is conducted to study the effects of the cage's spike height, tip width and angle on the stress distribution of the vertebral end plate, and the micromigration of the cage in the A-P direction. The stress distribution in the end plate is examined when a normal load of 1700N is applied to the vertebra after inserting 2 cages. The micromigration of the cage is examined when a pull out load of l00N is applied in the A-P direction. The analysis results reveal that the spike tip width significantly influences the stress concentration in the end plate, but the spike height and angle do not significantly influence the stress distribution in the end plate touching the cage's spikes. In addition, the analysis results show that the micromigration of the cage can be reduced by adjusting the spike angle and spike arrangement in the A-P direction. This study proposes the optimal shape of an intervertebral fusion cage, which promotes bone fusion, reduces the stress concentration in a vertebral end plate, and increases mechanical stability.